• Title/Summary/Keyword: Load testing

Search Result 1,270, Processing Time 0.029 seconds

A Novel Claw Pole Eddy Current Load for Testing a DC Counter Rotating Motor Part I: Construction

  • Kanzi, Khalil;Dehafarin, Abolfazl;Roozbehani, Sam;Kanzi, Majid;Vasheghani, Qasem
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.321-329
    • /
    • 2012
  • Providing variable load for testing a motor in high speed conditions is usually a difficult task. The eddy current brake can be used in application of load testing of motors. This paper deals with construction of a novel claw pole eddy current brake which is employed as a load for a DC counter rotating motor (CRM). These kinds of motors have two inner and outer shafts that rotate in opposite directions simultaneously, which are particularly suitable for under water propulsion systems. The prototype 45KW eddy current brake consists of two parts. One of them is installed on the inner shaft of the 60KW DC CRM and the other one is installed on its outer shaft. The simulation and experimental results with prototype brakes are also analyzed by using MATLAB/Simulink and the operational characteristic of the brake is demonstrated as a function of the motor speed and current of the magnetic poles.

Reliability testing equipment for SF_6 gas load break switch (가스절연부하개폐기의 신뢰성 평가장비)

  • Heo J.C.;Park S.J.;Kang Y.S.;Koh H.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.560-562
    • /
    • 2004
  • $SF_6$ gas has been increasingly used as the insulating and arc-suppressing medium in switchgears which are used as the protection devices of power system. Nowadays, most of power companies adopted the $SF_6$ gas-type load break switch for increasing the reliability of distribution network by its superior durability against external environmental condition, in substitution for air-type and oil-type switches. But, it is important to establish the general estimation process for the testing and estimation for long-term reliability Accordingly, the national standard(RS C0031) was made for the reliability assessment of $SF_6$ gas load break switch and the testing facilities were also set in KERI(Korea Electrotechlology Research Institute). This paper presents the requirements of RS C0031 for reliability assessment of $SF_6$ gas load break switch and synopsis of the accelerated life testing facilities for $SF_6$ gas load break switch.

  • PDF

Development of energy saving type life testing device for large machinery parts (에너지절감형 대형기계류부품용 수명시험장치의 개발)

  • Lee, Yong Bum;Shin, Suk Shin;Park, Jong Ho
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • For a reliability assessment of large machinery parts, reliable data should be obtained from testing many samples for a long time. However, in case of testing these samples, testing cost is excessive; in case of life test for long time, power consumption is high; and in case of accelerated test by over load, very high cost is required to build the life testing device. Especially it is very frequent that the expensive device's life has ended during a accelerated test by over load. In this study, the design mechanism of the life testing device which excels in energy saving during the reliability test of large machinery parts has been introduced.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System (특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구)

  • Jung, Heung-Soo;Kim, Min-Young;Kim, Juen-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.36-46
    • /
    • 2008
  • This paper is to study on the Construction of Test circuit and Unification of Experiment Method for high voltage gas-insulated load switch using high power testing system The high power testing system is a equipment to verify electrical and mechanical performance on electrical product. The system consist of short-circuit generator, back-up breaker, making switch, impedance, high voltage transformer, low voltage transformer, measuring and protection system, etc. Using this system, we can test related to high power, for example, short-time current test, active load Current test, magnetizing Current test, capacitive current test, closed loop current test, etc. Standards of high voltage gas-insulated load switch that is in use domestic distribution line are ES 5925-0002, IEC 60265-1, IEC 62271-1 and IEEE C 37.74, etc. In this paper, we standardized on the test procedure, organization of test circuit and analysis of measured data prescribed many difference standards, and applied this test method to 600[MVA] high power testing system. So that we can test the load switch satisfied standards.

An Analysis on the Nonlinear Behavior of Block Pavements using Multi-Load Level Falling Weight Deflectometer Testing (다단계 FWD 하중을 이용한 블록포장의 비선형 거동 분석)

  • Park, Hee Mun;Kim, Yeon Tae;Lee, Su Hyung
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS : Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS : The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS : In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.

An Improvement for Determining Response Modification Factor in Bridge Load Rating (응력보정계수 산정 방법 개선)

  • Koo, Bong-Kuen;Shin, Jae-In;Lee, Sang-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.1
    • /
    • pp.169-175
    • /
    • 2001
  • Bridge load rating calculations provide a basis for determining the safe load capacity of bridge. Load rating requires engineering judgement in determining a rating value that is applicable to maintaining the safe use of the bridge and arriving at posting and permit decisions. Load testing is an effective means in calculating the rating value of bridge. In Korea, load carrying capacity of bridge is modified by response modification factor that is determined from comparisons of measured values and analysis results. The response modification factor may be corrupted by vehicle location error that is defined as the gap of test vehicle location between load testing and analysis. In this study, the effects of vehicle location error to structural response and response modification factor are investigated, and a new method for evaluating response modification factor is proposed. The random data analysis shows that the proposed method is less sensitive to vehicle location error than the present method.

  • PDF

Comparison and Evaluation of Load Test Methods for Aluminum Car Body (알루미늄 차체 하중 시험 방법에 관한 비교 평가)

  • 서승일;박춘수;신병천
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 2004
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Static load test has been performed up to date to assess structural safety of the carbody. However, static load test is not sufficient to evaluate fatigue strength of the carbody, because fatigue failure is caused by dynamic load. In this study, the established load test methods for carbody are described and the characteristics of the methods are discussed. Also, a testing method to simulate dynamic loading condition is proposed for evaluation of fatigue strength of the carbody. The results by the proposed testing method are compared with the results by the static load test and new findings are discussed.

Study on Accelerated Life Test Design for a Gear Type Lubrication Pump for Automatic Transmission (자동변속기 윤활용 기어펌프의 가속 수명시험 설계에 관한 연구)

  • Park, Jong-Won;Jung, Dong-Soo
    • Journal of Applied Reliability
    • /
    • v.12 no.3
    • /
    • pp.201-213
    • /
    • 2012
  • A gear type lubrication pump is an essential component of the powertrain and has a major role for supplying oil to the gears and bearings in automatic transmission with a hydraulic clutch. Therefore, the durability test code design of lubrication pump is very important to ensure the reliability of the entire transmission and the vehicle. In this study, the design process for the life testing of lubrication pump has been generalized by four steps. The four design steps of the life testing of lubrication pump consist of the configuration of load spectrum, rain flow counting and analysis of load level, the equivalent damage assessment and test code generation. In fact, the load spectrum should be obtained from the field operating condition but that kind of data is the top secret of manufacturers. This is not open to the public in general. So we could use the artificially simulated load spectrum instead of field obtained one and focused on the development of the general process for designing the life test of a gear type lubrication pump. Reliability goals for lubrication pump, pressure, torque, temperature and load spectrum, if present, as appropriate for the given test conditions, accelerated life testing for the lubrication pump can be designed by the developed design steps.

Resistance Model for Reliability Analysis of Existing Steel Girder Bridges (강거더 교량의 신뢰성해석을 위한 저항모델 개발)

  • Eom, Jun Sik
    • Journal of Applied Reliability
    • /
    • v.13 no.4
    • /
    • pp.241-252
    • /
    • 2013
  • Because of financial and safety concerns, there are needs for more accurate prediction of bridge behavior. Underestimation of the bridge load carrying capacity can have serious economic consequences, as deficient bridges must be repaired or rehabilitated. Therefore, the knowledge of the actual bridge behavior under live load may lead to a more realistic calculation of the load carrying capacity and eventually this may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Seventeen existing bridges were tested under truck load to confirm their adequacy of reliability. The actual response of existing bridge structures under live load is measured. Reliability analysis is performed on the selected representative bridges designed in accordance with AASHTO codes for bridge component (girder). Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. Therefore, the actual response of bridge structures, including unintentional composite action, partial fixity of supports, and contribution of nonstructural members are considered in the bridge reliability evaluation. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased by reducing uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.