• Title/Summary/Keyword: Load power factor

Search Result 847, Processing Time 0.028 seconds

A Study on Effective Enhancement of Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost

  • Lee Byung Ha;Kim Jung-Hoon
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.3
    • /
    • pp.252-259
    • /
    • 2005
  • Various problems such as increase of power loss and voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of generation cost is derived and it is used for effectively determining the locations of reactive power compensation devices and for enhancing the load power factor appropriately. In addition, voltage variation penalty cost is introduced and integrated costs including voltage variation penalty cost are used for determining the value of load power factor from the point of view of economic investment and voltage regulation. It is shown through application to a large-scale power system that the load power factor can be enhanced effectively using the load power factor sensitivity and the integrated cost.

A Study on a Methodology of Determining an Appropriate Load Power Factor Effectively by the Use of Reactive Power Sensitivity and Load Duration Curve (무효전력 민감도와 부하지속곡선을 활용한 적정 부하역률의 효과적인 산정 기법에 관한 연구)

  • Lee, Byung Ha;Hwang, Sung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1782-1790
    • /
    • 2012
  • In this paper, a methodology to use load duration curve and the reactive power factor sensitivity of generation cost is proposed for analyzing the effects of load power factor effectively. A great deal of cases of power systems are classified into several patterns according to the characteristics using load duration curve, and the overall effects of load power factor are assessed by integrating the analysis results of load power factor in all the patterns. The reactive power sensitivity of generation cost and the integrated costs such as generation cost, investment cost, voltage variation penalty cost and CO2 emission cost are used for determining an appropriate load power factor. A systematic procedure for effective analysis of load power factor is presented. It is shown through the application to the practical power system of KEPCO(Korea Electric Power Corporation)that the effects of load power factor can be analyzed effectively using load duration curve and reactive power factor sensitivity.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (발전비용의 부하역률 감도를 이용한 효율적인 역률 개선 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.196-198
    • /
    • 2003
  • The low load power factor causes various problems such as the increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and its effects in supplying the reactive power and enhancing the load power factor are analyzed in a small-scale power system. The load power factor sensitivity of the generation cost is applied for determining the locations and capacities of reactive power compensation devices. It is shown that the generation cost can be reduced and the system power factor can be enhanced effectively using the load power factor sensitivity.

  • PDF

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

A Study on Enhancing the Load Power Factor from the Point of View of Economic Operation Using the Load Power Factor Sensitivity Method (부하역률 감도기법 적용에 의한 전력시스템의 경제운용 측면에서의 역률개선 방안 연구)

  • Lee B. H.;Kim J. H.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.153-155
    • /
    • 2004
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the integrated costs are used for determining the value of the load power factor from the point of view of the economic operation. It is shown through the application to a large-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost and Integrated Costs (발전비용의 부하역률 감도와 종합비용을 활용한 효과적인 역률개선 방안 연구)

  • Lee, B.H.;Oh, M.H.;Kim, J.H.;Shim, K.B.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.284-286
    • /
    • 2003
  • The low load power factor causes various problems such as the Increase of the power loss and the voltage instability. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the integrated management of ractive power troublesome, from which the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost and integrated costs are used for determining the locations and capacities of reactive power compensation devices effectively and for enhancing the load power factor appropriately. It is shown through the application to a small-scale power system that the system power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

  • PDF

The Optimal Power Flow Algorithm Considering Load Power Factor Limits (부하역률 제약조건을 고려한 최적 급전 알고리즘)

  • 김광욱;조종만;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.494-499
    • /
    • 2004
  • This paper presents to compute the power economic dispatch, an optimal power flow (OPF) computation algorithm, considering the load power factor limits constraint in developed. Efficient reactive power planning enhances economic operation as well as system security. Accordingly, an adequate level of power factor limits for the load busesshould be evaluated for economic operation. In this paper, the ranges of acceptable load power factors are portrayed as bandwidths of load power factor expressed as a function of load level. The load power factor limits are included and described into the OPF's objective function. The method Proposed is applied to IEEE 26 bus system.

A Study on Enhancing Load Power Factor Effectively Using Load Duration Curves and the Power Factor Sensitivity of Generation Cost (부하지속곡선과 부하역률 감도기법 적용에 의한 효과적인 부하역률개선 연구)

  • Lee, Byung-Ha;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.480-482
    • /
    • 2005
  • In this paper, utilization of load duration curves is presented for analyzing the effect of load power factor and determining the value of load power factor effectively. In addition, the power factor sensitivity of generation cost and integrated costs including voltage variation penalty cost are used for determining the value of the load power factor from the point of view of voltage regulation and economic investment. It is shown through the application to the KEPCO power system that the load power factor can be enhanced effectively and appropriately using the load duration curve.

  • PDF

Sensitivity Analysis of the Power System Considering the Load Power Factor While using Direct Load Control (부하 역률을 고려한 직접부하제어 실행시 계통의 민감도 분석)

  • Chae, Myeong-Suk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.333-336
    • /
    • 2015
  • Recently, the power load is growing larger and because of the environmental limitation of generation, the expansion of generation facilities are becoming more difficult. For that reason the importance of the demand-side resources come to be higher. One method of the demand-side resource, the DLC Program, has executed, and moreover, the loads which are available to be controlled are increasing. It should be considered of some kinds of power system components such as DLCs, because the fact that using the demand resources will be an important part of the power system. This paper considers the power factor of the load-bus which is shedded in the direct load control program. and then analyze the power system using flow sensitivity and voltage sensitivity. In this paper, we assumed two scenarios through the rank of the load power factor at each bus and to compare and evaluate each case, we used Power World for the simulation.

A Study on Simultaneous Load Factor of Intelligent Electric Power Reduction System in Korea (한국의 지능형 전력동시부하율 저감시스템에 관한 연구)

  • Kim, Tae-Sung;Lee, Jong-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2012
  • This study is designed to predict the overall electric power load, to apply the method of time sharing and to reduce simultaneous load factor of electric power when authorized by user entering demand plans and using schedules into the user's interface for a certain period of time. This is about smart grid, which reduces electric power load through simultaneous load factor of electric power reduction system supervision agent. Also, this study has the following characteristics. First, it is the user interface which enables authorized users to enter and send/receive such data as demand plan and using schedule for a certain period of time. Second, it is the database server, which collects, classifies, analyzes, saves and manages demand forecast data for a certain period of time. Third, is the simultaneous load factor of electric power control agent, which controls usage of electric power by getting control signal, which is intended to reduce the simultaneous load factor of electric power by the use of the time sharing control system, form the user interface, which also integrate and compare the data which were gained from the interface and the demand forecast data of the certain period of time.