• 제목/요약/키워드: Load interaction effect

검색결과 281건 처리시간 0.024초

Improvement to Crack Retardation Models Using ″Interactive Zone Concept″

  • Lee, Ouk-Sub;Chen, Zhi-Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제3권4호
    • /
    • pp.72-77
    • /
    • 2002
  • The load interaction effect can be best illustrated by the phenomenon of overload retardation. Some prediction methods for retardation are reviewed and the problems discussed in the present paper. The so-called under-load effect much of the retardation disappears if a very low level minimum stress follows the overload, is also of importance for a prediction model to work properly under random load spectrum. The concept of Interactive Zone (IZ) fully considering reversed plasticity during unloading was discussed. This IZ concept can be combined with existing models to derive some improved models that can naturally take account of the under-load effect. Some simulations by IZ improved models for test under complex load sequences including multiple overloads and both over/under loads are compared with test results. It is seen that the improvement by IZ concept greatly enhanced the ability of existing models to accommodate complex load interaction effects.

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction

  • Kontoni, Denise-Penelope N.;Farghaly, Ahmed Abdelraheem
    • Wind and Structures
    • /
    • 제30권4호
    • /
    • pp.423-432
    • /
    • 2020
  • A steel high-rise building (HRB) with 15 stories was analyzed under the dynamic load of wind or four different earthquakes taking into consideration the effect of soil-structure interaction (SSI) and using tuned mass damper (TMD) devices to resist these types of dynamic loads. The behavior of the steel HRB as a lightweight structure subjected to dynamic loads is critical especially for wind load with effect maximum at the top of the building and reduced until the base of the building, while on the contrary for seismic load with effect maximum at the base and reduced until the top of the building. The TMDs as a successful passive resistance method against the effect of wind or earthquakes is used to mitigate their effects on the steel high-rise building. Lateral displacements, top accelerations and straining actions were computed to judge the effectiveness of the TMDs on the response of the steel HRB subjected to wind or earthquakes.

차량의 동적 상호작용에 관한 이론연구 및 윤하중 실험 (An Analytical and Experimental Wheel Tracking Study on Dynamic Interaction of Vehicle)

  • 김낙석;박석순
    • 한국재난정보학회 논문집
    • /
    • 제2권1호
    • /
    • pp.39-52
    • /
    • 2006
  • In this paper, an analytical and experimental study was performed in order to determine the effects of interaction between vehicle and structure. Results presented in the paper show that analytical method including moving load effect can investigate the trend of structural response due to dynamic interaction between vehicle and structure. The wheel tracking machine fitted with 2-axle test vehicle can demonstrate more accurate dynamic interaction between vehicle and structure than the wheel tracking machine fitted without 2-axle test vehicle.

  • PDF

모형실험을 통한 사질토 지반에서의 무리말뚝 거동에 대한 상부기초 접촉 효과 연구 (An Experimental Study of the Effect of Pile Cap on Behaviors of Group Piles)

  • 이수형;진봉근;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.259-266
    • /
    • 1999
  • In case that pile cap is in direct contact with underlying soil, the bearing mechanism for pile groups, including direct bearing effect of cap and its induced influence on pile-soil-cap interaction, should be properly considered. In this paper, the effects of pile caps on behaviors of pile groups in sandy soils were investigated by model tests, which consist of tests on 3 by 3 pile groups with/without contact on subsoil, single pile with/without contact and cap as a shallow foundation. Also, the influences of pile spacing in group piles on contact effects were investigated. The test results showed that the load carrying capacity of pile cap was large enough not to be ignored. However, the interaction effects due to contact between cap and subsoils were not revealed obviously in working load range. And in the design of pile groups, the bearing effect of pile cap when contacted with subsoils, can be reflected by simply summing up load settlement behaviors of each cap and group piles without contact.

  • PDF

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • 제7권2호
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

미끄러져 넘어짐의 생체학적 연구에 있어서 부하이동이 끼치는 영향 (Load Carrying Effect on the Biomechanical Parameters of Slips and Falls)

  • 명노해
    • 대한산업공학회지
    • /
    • 제27권2호
    • /
    • pp.197-202
    • /
    • 2001
  • The biomechanical analysis of the load carrying effect on different floor surfaces has been conducted. Four different floor surfaces were prepared for ten subjects with each walking at a fixed velocity(1.33 m/sec) while carrying five different loads. The results showed that because of the significant interaction effect between floor slipperiness and the load carrying task, the load carrying effect should be analyzed according to different levels of the floor slipperiness, especially contaminant floors. On oily surfaces, slip distance(SD) and heel velocity (HV) increased whereas stride length(SL) decreased as load increased. In other words, significantly longer SD, faster HV, and no normal gait were found as load increased. As a result, a different protocol should be applied to measure floor slipperiness on oily floors as compared to dry surfaces for tribological approach.

  • PDF

아치의 곡률면외 자유진동 해석과 P-M상관도 (The Effect of Initial Combined Load on the Lateral Free Vibration on the Aarch and P-M Interaction Curve)

  • 전교영;김성남;김종헌;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.495-500
    • /
    • 2003
  • The effect of initial combined load on the lateral free vibration of arches is investigated. For the analysis, P-M interaction curves for the arches are obtained. The arches are circular arches which have constant cross-section and simply supported. Also, the arches are subjected both radial uniform distributed load which results in an axial compression on the cross-section and end moments that cause uniform bending action at the same time. All analysis are performed by finite element method based on Kang and Yoo's curved beam theory.

  • PDF

편심하중이 작용하는 수평 곡선 I 형 거더의 휨·비틀림 상호작용 (Interaction of Flexure-Torsional by eccentric load in horizontal curved 'I' shape girder)

  • 임정현;이기세;김희수;최준호;강영종
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6385-6390
    • /
    • 2015
  • 수평 곡선 I-형 거더에는 초기곡률이라는 기하학적 특성으로 인해 휨 모멘트와 더불어 비틀림 모멘트가 작용하게 된다. 이러한 휨 비틀림 거동은 서로 상호 작용을 일으켜 약축방향으로 2차 휨거동을 유발하게 된다. 휨과 비틀림 간의 상호 작용은 곡선 거더를 조기에 비선형 상태 및 소성 상태로 유도하여 내하력의 저하를 야기하게 되고, 차량의 이동 위치에 따른 편심 하중은 비틀림을 더욱 증대시킬 수 있다. 그러나 기존에 연구되어왔던 직선 거더에 대한 휨 비틀림 상호관계식은 곡선 거더가 가지고 있는 거동 특성이 고려되지 않았기 때문에 수직하중을 받는 수평 곡선 I-형 거더의 극한 강도가 과대평가 될 수 있다. 따라서 이에 대한 보다 명확하고 합리적인 제안식의 적용이 곡선 거더의 설계 시에 필요하다. 본 연구에서는 유한요소해석을 통하여 편심하중이 작용하는 수평 곡선 I형 거더의 휨 비틀림 상호작용 특성을 파악하고 거동분석을 수행하였다.

Interface friction in the service load assessment of slab-on-girder bridge beams

  • Seracino, R.;Kerby-Eaton, S.E.;Oehlers, D.J.
    • Steel and Composite Structures
    • /
    • 제5권4호
    • /
    • pp.259-269
    • /
    • 2005
  • Many slab-on-girder bridges around the world are being assessed because they are approaching the end of their anticipated design lives or codes are permitting higher allowable loads. Current analytical techniques assume that the concrete and steel components act independently, typically requiring full-scale load testing to more accurately predict the remaining strength or endurance of the structure. However, many of the load tests carried out on these types of bridges would be unnecessary if the degree of interaction resulting from friction at the steel-concrete interface could be adequately modeled. Experimental testing confirmed that interface friction has a negligible effect on the flexural capacity of a slab-on-girder beam however, it also showed that interface friction is significant under serviceability loading. This has led to the development of an improved analytical technique which is presented in this paper and referred to as the slab-on-girder mixed analysis service load assessment approach.