• Title/Summary/Keyword: Load impedance

Search Result 412, Processing Time 0.021 seconds

The Parallel Operation Control of Static UPSs (정지형 UPS의 병렬운전 제어)

  • Min, Byeong-Gwon;Won, Chung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.7
    • /
    • pp.363-368
    • /
    • 1999
  • The parallel operation system of multiple uninterruptible power supplies(UPSs) is used to increase power capacity of the system or to secure higher reliability at critical loads. In the parallel operation of the two UPSs, the load-sharing control to maintain the current balance between them is a key technique. Because a UPS has low output impedance and quick response characteristics, in case of an unbalanced load inverter output current changes very rapidly and thereby can instantaneously reach an overload condition. In this study, high precise load-sharing controller is proposed and implemented for the parallel operation system of two UPSs with low impedance characteristics and this controller controls the frequency and the voltage to minimize the active power component and the reactive power component which are gotten from the current difference between two UPSs. And then a good performance of the proposed method is verified by experiments in the parallel operation system with two 40KVA UPSs.

  • PDF

Contigency Ranking Technique Using Line Capacity Calculation Method (선로용량 산정법을 이용한 상정사고 선택)

  • Park, Kyu-Hong;Jung, Jai-Kil;Hyun, Seung-Bum;Lee, In-Yong;Jung, In-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.285-288
    • /
    • 2000
  • This paper presents a technique for contingency ranting using line capacity calculation method and outage distribution factors(LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranting, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. ( $Z_r$/ $Z_s$=1) The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

Contigency Ranking Technique Using New Line Capacity (새로운 선로용량을 고려한 전력계통의 상정사고 선택)

  • Park, Kyu-Hong;Cho, Yang-Haeng
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.95-98
    • /
    • 2000
  • This paper presents a technique for contingency ranking using line capacity calculation method and outage distribution factors (LODF) which are established by generation shift distribution factors from DC load flow solutions. By using the LODF, the line flow can be calculated a ccording to the modification of base load flow if the contingency occur. To obtain contingency ranking, maximum power tansferred to the load is obtained when load impedance $Z_r$ equal to line impedance $Z_s$. The proposed algorithm has been validated in tests on a 6-bus test system.

  • PDF

On the in-duct acoustical source characteristics of a simplified time-varying fluid machine (시변하는 간단한 유체기계의 덕트 내 음원 특성에 대한 해석적 연구)

  • 이정권;장승호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.517-521
    • /
    • 2001
  • Measurement techniques for the in-duct source characteristics of fluid machines can be classified into direct method and load method, according to whether the technique employs an external acoustic source or not. It has been known that the two methods yield different results and the load method used to come up with a negative source resistance, in spite of the fact that a very accurate prediction of radiated noise can be obtained by using any result. This paper is focused to the effect of time-varying nature of fluid machines on the output result. For this purpose, a simplified fluid machine consisting of a reservoir, a valve and a pipe is considered as representing a typical linear, periodic, time-varying system and the measurement techniques are simulated by utilizing the Hill equation and its steady-state forced response. In the load method, the source impedance turns out being dependent on the valve impedance at the calculation frequency and the valve and load impedances at other frequencies as well.

  • PDF

Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.9 no.6
    • /
    • pp.489-504
    • /
    • 2012
  • For the safety of prestressed structures such as cable-stayed bridges and prestressed concrete bridges, it is very important to ensure the prestress force of cable or tendon. The loss of prestress force could significantly reduce load carrying capacity of the structure and even result in structural collapse. The objective of this study is to present a smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Firstly, a smart PZT-interface is newly designed for sensitively monitoring of electro-mechanical impedance changes in tendon-anchorage subsystem. To analyze the effect of prestress force, an analytical model of tendon-anchorage is described regarding to the relationship between prestress force and structural parameters of the anchorage contact region. Based on the analytical model, an impedance-based method for monitoring of prestress-loss is conducted using the impedance-sensitive PZT-interface. Secondly, wireless impedance sensor node working on Imote2 platforms, which is interacted with the smart PZT-interface, is outlined. Finally, experiment on a lab-scale tendon-anchorage of a prestressed concrete girder is conducted to evaluate the performance of the smart PZT-interface along with the wireless impedance sensor node on prestress-loss detection. Frequency shift and cross correlation deviation of impedance signature are utilized to estimate impedance variation due to prestress-loss.

Dual-band L-section Impedance Transformer (이중 대역 L형 임피던스 변환기)

  • Park, Myun-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.67-71
    • /
    • 2010
  • This paper proposes new dual-band impedance transformers based on the L-section circuit topology. The proposed circuits consist of a transmission line section with a stub line either at the source or at the load end. The dual-band operating conditions are analyzed in detail and simple design equations are derived in terms of the line lengths and impedances for the different circuit topologies and load conditions. The dual-band operation is confirmed through the design, fabrication and measurement in microstrip circuits based on the proposed method.

A Study of Impedance Matching Circuit Design for PLC

  • Kim, Gi-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.4
    • /
    • pp.453-458
    • /
    • 2009
  • This paper presents two methods of designing a Broadband Impedance Matching (BIM) circuit for maximizing a power line communication (PLC) equipment (or Modem) signal injection into its load at any power line connection port. This optimal (BIM) circuit design is achieved in two phases: Butterworth gain function and Tchebycheff gain function. According to the comparison of simulation and practical results, the performances of two gain functions on BIM are discussed.

Droop Control to Compensate Load Voltage Unbalance for Inverter-based Distributed Generations with Unequal Impedance Lines (불균등 임피던스 선로를 갖는 인버터기반 분산전원의 부하전압 불평형을 보상하는 드룹 제어)

  • Yang, Won-Mo;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper proposes a droop control scheme to compensate the unbalanced line-to-line voltage of unbalanced 3-phase load which is coupled with two inverter-based distributed generations through unequal impedance lines. Unbalanced line-to-line load voltages occur due to using single-phase loads, which brings about bad effects on the coupled inverters and the distributed generations. In order to compensate the unbalanced line-to-line voltages, a positive sequence voltage control was used for sharing the active and reactive power and a negative sequence control was used for reducing the negative sequence voltage. The feasibility of the proposed scheme was first verified by computer simulations, and then experiments with a hardware set-up built in the lab. The experimental results were compared with the simulation results to confirm the feasibility of the proposed scheme.

A Study on Real Time Catenary Impedance Estimation Technique using the Synchronized Measuring Data between Substation and Train (변전소와 차량간의 동기화를 통한 실시간 전차선로 임피던스 예측 기법 연구)

  • Jung, Hosung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1458-1464
    • /
    • 2013
  • This paper proposed a new real time catenary impedance estimation technique using synchronized power data from the measured data of operating vehicle and substation for catenary protective relay and fault locator setting. This paper presented estimation equation of catenary impedance using synchronized power data between substation and vehicle of AT feeding system for the performance verification of the proposed technique. Also AC feeding system is modeled through power analysis program and performance was verified through simulation according to various load changes. We verified that average 2.38%(distance equivalent 23.8 m) error appeared between the proposed estimation equation of catenary impedance and power analysis program simulation output in no connection double track system between up track and down track. Furthermore, We confirmed that estimation error is bigger depending on the increasing the distance from substation and vehicle impedance using only using vehicle current when calculating vehicle impedance in connection double track system between up track and down track. But, We confirmed that the proposed technique estimated accurately catenary impedance regardless of vehicle impedance and distance from substation.

A study on the on-load torque measurement for three phase induction motor (삼상유도전동기의 부하시 토오크 측정에 관한 연구)

  • 이승원;김은배;황석영;강석윤
    • 전기의세계
    • /
    • v.30 no.11
    • /
    • pp.734-746
    • /
    • 1981
  • This paper suggests on-load torque measurement for 3 phase induction motors by input -voltage and current utilizing symmetric coordinate analysis technique on the basis of the induction motor equivalent circuit. In this paper, two cases are treated with, i.e, one is the case where the motors' exciting current and primary leakage impedance voltage drop are compensated automatically, adopting the ideal wattmeter whose current coil impedance and voltage coil impedance are 0 and .inf. respectively, and the other is the case where non-ideal wattmeter is adopted and the compensation above is made by computation. As a result of the case study, following conclusions are obtained. 1) By proper combination of the error propagation law and the limit of power consumption, the desirable overall measurement error of the apparatus can be obtained on the basis of the inherent errors of CT and PT. 2) The measurement error is larger in current simulation circuit than in voltage simulation circuit. 3) Between the two cases, the latter is more advantageous than the former from the viewpoint of feasibility and the measurement error. 4) As the attachment of Ammeter in the current simulation circuit influences the measurement error considerably, its internal impedance should be large considerably. 5) The larger the consumption power of the apparatus is, the easier the feasibility is.

  • PDF