Proceedings of the Computational Structural Engineering Institute Conference
/
2004.10a
/
pp.461-468
/
2004
Modal participation factor(MPF) is essential to analyze structural response under earthquake load. MPF of real structure differs from that of analytic mathematical model due to the error induced from analytical assumption and construction. In this study, a identification method is proposed to calculate the MPF of real structure based on H∞ optimal model reduction. The MPF is obtained from the relationship between observability, controllability matrix of realized from S.I. and typical 2-degree state space model. The proposed method is verified thorough examples.
This paper explores the possibility of using a combination of the empirical mode decomposition (EMD) and the Hilbert transform (HT), termed the Hilbert-Huang transform (HHT) method, to identify the modal damping ratios of the structure with closely spaced modal frequencies. The principle of the HHT method and the procedure of using the HHT method for modal damping ratio identification are briefly introduced first. The dynamic response of a two-degrees-of-freedom (2DOF) system under an impact load is then computed for a wide range of dynamic properties from well-separated modal frequencies to very closely spaced modal frequencies. The natural frequencies and modal damping ratios identified by the HHT method are compared with the theoretical values and those identified using the fast Fourier transform (FFT) method. The results show that the HHT method is superior to the FFT method in the identification of modal damping ratios of the structure with closely spaced modes of vibration. Finally, a 36-storey shear building with a 4-storey light appendage, having closely spaced modal frequencies and subjected to an ambient ground motion, is analyzed. The modal damping ratios identified by the HHT method in conjunction with the random decrement technique (RDT) are much better than those obtained by the FFT method. The HHT method performing in the frequency-time domain seems to be a promising tool for system identification of civil engineering structures.
Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Lee, Young-Ho
Proceedings of the Korean Society for Noise and Vibration Engineering Conference
/
2007.05a
/
pp.588-593
/
2007
Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.
Seo, Hyeong-Yeol;Kim, Doo-Kie;Kim, Dong-Hyawn;Cui, Jintao;Park, Ki-Tae
Proceedings of the Computational Structural Engineering Institute Conference
/
2007.04a
/
pp.565-570
/
2007
Fiber reinforced polymer(FRP) composite decks are new to bridge applications and hence not much literature exists on their structural mechanical behavior. As there are many differences between numerical displacements through static analysis of the primary model and experimental displacements through static load tests, system identification (SI)techniques such as Neural Networks (NN) and support vector machines (SVM) utilized in the optimization of the FE model. During the process of identification, displacements were used as input while stiffness as outputs. Through the comparison of numerical displacements after SI and experimental displacements, it can note that NN and SVM would be effective SI methods in modeling an FRP deck. Moreover, two methods such as response surface method and iteration were proposed to optimize the estimated stiffness. Finally, the results were compared through the mean square error (MSE) of the differences between numerical displacements and experimental displacements at 6 points.
The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.
Journal of electromagnetic engineering and science
/
v.16
no.4
/
pp.206-209
/
2016
This letter proposes a reconfigurable directional coupler that uses a variable impedance mismatch reflector to achieve high isolation characteristics in the antenna front end. The reconfigurable coupler consists of a directional coupler and a single-pole four-throw (SP4T) switch with different load impedances as a variable load mismatch reflector. Selection of the load impedance by the reflector allows cancellation of the reflected signal due to antenna load mismatch and the leakage from the input to isolation port of the directional coupler, resulting in high isolation characteristics. The performance of the proposed architecture in separating the received (Rx) signal from the transmitted (Tx) signal in the antenna front end was verified by implementing and testing the reconfigurable coupler at 917 MHz for UHF radio-frequency identification (RFID) applications. The proposed reconfigurable directional coupler showed an improvement in the isolation characteristics of more than 20 dB at the operation frequency band.
In this study, two large pile load tests were performed in the deep sand gravel deposit of Nakdong river basin so that the characteristics of the load transfer was identified. The fully instrumented rectangular barrette pile in the size of $1.5\times3.0m$ and the circular bored pile of the diameter 1.5 m were placed into the ground below 50 m. Under the applied loads of 2,400 tonf and 4,000 tonf, the test results of the load transfer showed the portion of 83% and 93% of the applied loads on the barrette pile and the bored pile, respectively, were supported by the skin friction along the pile shaft. It was revealed that the most of these skin friction mobilized in sand layer underlying clay layer having N-value more than 30 and that the friction per unit area of the bored pile was larger than the friction of barrette pile. However, if embedded in the stiff sand graval layer, the both piles were proven to be sufficient for using as the friction piles.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.16
no.3
/
pp.163-172
/
2016
Electric load forecasting is essential for effective power system planning and operation. Complex and nonlinear relationships exist between the electric loads and their exogenous factors. In addition, time-series load data has non-stationary characteristics, such as trend, seasonality and anomalous day effects, making it difficult to predict the future loads. This paper proposes a locally-weighted polynomial neural network (LWPNN), which is a combination of a polynomial neural network (PNN) and locally-weighted regression (LWR) for daily shortterm peak load forecasting. Model over-fitting problems can be prevented effectively because PNN has an automatic structure identification mechanism for nonlinear system modeling. LWR applied to optimize the regression coefficients of LWPNN only uses the locally-weighted learning data points located in the neighborhood of the current query point instead of using all data points. LWPNN is very effective and suitable for predicting an electric load series with nonlinear and non-stationary characteristics. To confirm the effectiveness, the proposed LWPNN, standard PNN, support vector regression and artificial neural network are applied to a real world daily peak load dataset in Korea. The proposed LWPNN shows significantly good prediction accuracy compared to the other methods.
A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.4
/
pp.34-42
/
2017
Since existing nonintrusive appliance load monitoring (NIALM) studies assume that voltage fluctuations are negligible for load identification, and do not affect the identification results, the power factor or harmonic signals associated with voltage are generally not considered parameters for load identification, which limits the application of NIALM in the Smart Home sector. Experiments in this paper indicate that the parameters related to voltage and the characteristics of harmonics should be used to improve the accuracy and reliability of the load monitoring system. Therefore, in this paper, we propose an improved NIALM method that can efficiently analyze the types of household appliances and electrical energy usage in a home network environment. The proposed method is able to analyze the energy usage pattern by analyzing operation characteristics inherent to household appliances using harmonic characteristics of some household appliances as recognition parameters. Through the proposed method, we expect to be able to provide services to the smart grid electric power demand management market and increase the energy efficiency of home appliances actually operating in a home network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.