• Title/Summary/Keyword: Load flow calculation

Search Result 156, Processing Time 0.026 seconds

Improvement of the Performance of Solar Cooling Heating Systems(I) - Dynamic Load Calculation Using TRNSYS and an Optimization of Solar Systems - (태양열에 의한 냉방 및 난방시스템의 성능향상(I) - TRNSYS에 의한 동직열부하 계산과 태양열 시스템의 최적화 -)

  • Kang, Y.T.;Kim, H.K.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.6
    • /
    • pp.696-707
    • /
    • 1988
  • This study simulates a typical solar system using the transient simulation program TRNSYS, and calculates the maximum cooling load of the model room of $50m^2$. In this study, energy rate control method is used in calculating a maximum cooling load. On the ground of the maximum cooling load of the model room, the variables that have an effect on the solar collection performance of the solar system are made a selection. Also in this study the trend of the solar collection performance is shown as the variables change. The results show that the variables which have an effect on the collection performance are collector area, collector mass flow rate, collector slope and the volume of storage tank, and the optimal value of Ac/Vt is not constant but varies as the collector area and the collector mass flow rate. Also the results show that for cooling system the optimal value of the collector slope is latitude minus $15^{\circ}$ during the seasonal operations, and twenty percent of the maximum cooling load is saved with the aid of the solar energy.

  • PDF

Analysis of Operating Characteristics of 200kW Class Micro Gas Turbine (200kW 급 마이크로 가스터빈의 운전특성 분석)

  • Kim, Jeong Ho;Kang, Do Won;Kim, Tong Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.1015-1022
    • /
    • 2013
  • This study simulates the operation of a 200 kW class micro gas turbine that is currently under development. The performance and operating characteristics depending on the load control scheme (constant turbine inlet temperature versus constant turbine exit temperature) and ambient condition were investigated using detailed component performance data. The sensitivities of operating parameters, such as the compressor surge margin and flow path temperatures, according to unit fuel flow change were predicted for a wide load range. The sensitivity analysis showed that the steady state calculation provided useful information about the maximum surge margin reduction during load change.

Estimation of PTC (Powertrain Cooling) Performance with Heat Rejection Rate (열방출량 (Heat Rejection Rate)을 이용한 PTC (Powertrain Cooling) 성능 추정)

  • Min, Sunki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3030-3034
    • /
    • 2015
  • It is important to consider powertrain cooling performance, when engine is applied to new vehicle. If the performance is poor, engine will be damaged by overheating. But, the development timing of engine is faster than timing of vehicle, it is difficult to test the cooling performance of new engine and vehicle. In this study the powertain cooling performance was estimated with some test and calculation data. First, the heat rejection test was conducted. From this test, the heat rejection data at required rpm and load was acquired. Second, coolant flow test was conducted. From this test coolant flow rate to radiator was measured. Then engine torque and rpm was calculated from vehicle load and speed. Vehicle load and speed was calculated from test mode. Then by comparing these data, the powertrain cooling performance was estimated.

Numerical investigations on the along-wind response of a vibrating fence under wind action

  • Fang, Fuh-Min;Ueng, Jin-Min;Chen, J.C.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.329-336
    • /
    • 2002
  • The along-wind response of a surface-mounted elastic fence under the action of wind was investigated numerically. In the computations, two sets of equations, one for the simulation of the unsteady turbulent flow and the other for the calculation of the dynamic motion of the fence, were solved alternatively. The resulting time-series tip response of the fence as well as the flow fields were analyzed to examine the dynamic behaviors of the two. Results show that the flow is unsteady and is dominated by two frequencies: one relates to the shear layer vortices and the other one is subject to vortex shedding. The resulting unsteady wind load causes the fence to vibrate. The tip deflection of the fence is periodic and is symmetric to an equilibrium position, corresponding to the average load. Although the along-wind aerodynamic effect is not significant, the fluctuating quantities of the tip deflection, velocity and acceleration are enhanced as the fundamental frequency of the fence is near the vortex or shedding frequency of the flow due to the occurrence of resonance. In addition, when the fence is relatively soft, higher mode response can be excited, leading to significant increases of the variations of the tip velocity and acceleration.

CFD Simulations of the Ground Surface Temperature and Air Temperature, Air flow Coupled with Solar Radiation (태양복사열에 따른 지표면 온도와 열, 기류 환경 시뮬레이션 연구)

  • Lee, JuHee;Kim, JaeGwon;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.65-70
    • /
    • 2014
  • The thermal environment in a small city rapidly deteriorates due to the urbanization and overpopulation. It is important to understand and predict the thermal environment in a city area. The thermal environment is highly affected by the solar radiation and temperature distributions changing over time periodically. To predict the thermal environment precisely, the solar radiation calculation including radiation strength, incidence angle, and thermal radiation between building surface and ground should be considered. In this study, the computational domain includes various artificial structures such as building, ground, asphalt, brick and grass. To consider the solar radiation, the unsteady state numerical calculation is performed from sun rise to mid-day (2:00pm). The numerical methods consist of solar load and one dimensional heat conduction through the boundaries to reduce the computational load and improve the flexibility of the calculation.

Comparison of Generated Loads by Hydroponics of Strawberry, Tomato, and Paprika in Gyeongsangnam-do (경남지역 딸기, 토마토, 파프리카 양액재배에 따른 발생부하량 비교)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.73-81
    • /
    • 2021
  • The objective of this study was to analyze the waste nutrient generation loads from hydroponics for three major crops in Gyeongsangnam-do. Study hydroponic farms were selected for the three major crops such as paprika, strawberry, tomato based on the agricultural statistics data and field investigation. The flow amount and water quality for inflow and outflow of study hydroponic farms were monitored and analyzed on a monthly basis. Monitored samples were analyzed in terms of DO, BOD, T-N, T-P, SS, and EC. The generated load of BOD, T-N, and T-P were calculated from the monitored flow and water quality. The monitoring results showed that the drainage ratio for the circular hydroponic farm was lower than the non-circular hydroponic farm because the outflow from the circular hydroponics were much lower than that from the non-circular. The generated load calculation results showed that the BOD tended to have a smaller value than the TMDLs guideline for land, while T-N and T-P showed higher value than that from the TMDLs guideline. In order to effectively manage the pollutant load discharged from the hydroponics farming complex, it is necessary to manage the non-circulating hydroponics farm. To improve water quality, it is necessary to gradually expand the circulating hydroponics farm through policy and economic support.

A Study on Determination of Boron Makeup Flow Rate During the Load Follow Operation (부하추종 운전시 보론 보충 수량 결정에 관한 연구)

  • Song, Yong-Mann;Lee, Un-Chul;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 1988
  • During power plant operation, the flow rate from the CVCS makeup system is estimated using the continuity equation and mass balance equation, when the primary loop boron concentration change is required due to the power transient. For this purpose, primary loop, pressurizer and VCT(volume control tank)(in CVCS) are modeled by three control volumes which contain each mass and boron concentration. Connecting pipes between primary loop, pressurizer and CVCS are also modeled by time delay. Calculation for 14-2-6-2 (power 100-50-100) load follow case (at EOL, for KNU 7) is made using these models.

  • PDF

Calculation of ice clearing resistance using normal vector of hull form and direct calculation of buoyancy force under the hull

  • Park, Kyung-Duk;Kim, Moon-Chan;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.699-707
    • /
    • 2015
  • The ice-resistance estimation technique for icebreaking ships had been studied intensively over recent years to meet the needs of designing Arctic vessels. Before testing in the ice model basin, the estimation of a ship's ice resistance with high reliability is very important to decide the delivered power necessary for level ice operation. The main idea of previous studies came from several empirical formulas, such as Poznyak and Ionov (1981), Enkvist (1972) and Shimansky (1938) methods, in which ice resistance components such as icebreaking, buoyancy and clearing resistances were represented by the integral equations along the Design Load Water Line (DLWL). The current study proposes a few modified methods not only considering the DLWL shape, but also the hull shape under the DLWL. In the proposed methodology, the DLWL shape for icebreaking resistance and the hull shape under the DLWL for buoyancy and clearing resistances can be directly considered in the calculation. Especially, when calculating clearing resistance, the flow pattern of ice particles under the DLWL of ship is assumed to be in accordance with the ice flow observed during ice model testing. This paper also deals with application examples for a few ship designs and its ice model testing programs at the AARC ice model basin. From the comparison of results of the model test and the estimation, the reliability of this estimation technique has been discussed.

A consistent FEM-Vlasov model for laminated orthotropic beams subjected to moving load

  • Ozgan, Korhan
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • In the study, dynamic behavior of laminated orthotropic beams on elastic foundation is investigated. Consistent model presented here combines the finite element solution of the system with SAP2000 software and the calculation of soil parameters with MATLAB software using Modified Vlasov Model type elastic foundation. For this purpose, a computing tool is coded in MATLAB which employs Open Application Programming Interface (OAPI) feature of SAP2000 to provide two-way data flow during execution. Firstly, an example is taken from the literature to demonstrate the accuracy of the consistent FEM-Vlasov Model. Subsequently, the effects of boundary conditions, subsoil depth, elasticity modulus of subsoil, slenderness ratio, velocity of moving load and lamination scheme on the behavior of laminated orthotropic beams on elastic foundation are investigated on a new numerical example. It can be concluded that it is really convenient to use OAPI feature of SAP2000 to model this complex behavior of laminated orthotropic beams on elastic foundation under moving load.

A study on the Reactive Power Compensation Effect Calculation by Determining an Accurate Voltage Collapse Point (정확한 전압붕괴점 결정에 의한 무효전력 보상 효과 산정 방법에 관한 연구)

  • Kim, Jung-Hoon;Ham, Jung-Pil;Lee, Byung-Ha;Won, Jong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.7-9
    • /
    • 2001
  • Many developing countries has been voltage unstable and the inter- change capability in Korea is limited by voltage instability. In analyzing voltage stability, load model has been considered as constant power, but actual loads vary as voltage changes. In order to incorporating voltage-dependent load model. we need the low-side of P-V curve that can not be obtained by general load flow algorithm. This paper proposes a modified GCF algorithm to obtain a full low-side of P-V curve and a accurate voltage assessment index considering load model. 5-bus sample system and 19-bus real power system are applied to simulate the proposed GCF. Also. the effect of reactive power compensation is illustrated in same systems.

  • PDF