• Title/Summary/Keyword: Load flow calculation

Search Result 156, Processing Time 0.03 seconds

Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads (수질오염총량관리 단위유역 유량측정자료를 이용한 유황곡선 작성)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • It is necessary to develop flow duration curve (FDC) on each unit watershed in order to analyze flow conditions in the stream for the management of Total Maximum Daily Loads (TMDLs). This study investigated a simple method to develop FDC for the general use of the curve. A simple equation for daily flow estimation was derived from the regression analysis between the 8-day interval flow data of a unit watershed and the daily flow monitoring data of an adjacent upstream region. FDC can be prepared with the calculation of daily flow by the equation for each unit watershed. An annual and a full-period FDC were drawn for each unit watershed in Guem river basin. Standard flow such as low and ordinary flow can be obtained from the annual FDC. Major percentile of flow such as 10, 25, 50, 75 or 90% can be obtained from the full-period FDC. It is considered that this simple method of developing FDC can be utilized more widely for the calculation of standard flow and the assessment of water quality in the process of TMDLs.

Analysis of Voltage Stability Using the Multiple Load Row Calculation Method with Loss Redistribution Algorithm (손실재분배 알고리즘을 이용한 조류다근계산법에 의한 전압 안정도 해석)

  • Ro, Min-Ho;Kim, Keun-Seong;Park, Sun-Jae;Chae, Myoung-Seck;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.743-745
    • /
    • 1996
  • This paper presents an approach for the analysis of static voltage stability in power system. The proposed approach is based on multiple load flow calculation method using the redistribution algorithm of transmission loss, with which more realistic load flow solution can be obtained in the near of voltage collapse point. Some simulation results of the proposed approach show that the accuracy of static voltage stability analysis can be increased.

  • PDF

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.

A Study for a Novel DistFlow Method in the Distribution System (배전계통에서의 새로운 DistFlow Method에 대한 연구)

  • Gwak, Do-Il;Kim, Jae-Eon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.7
    • /
    • pp.365-368
    • /
    • 2000
  • Traditionally, load flows have been calculated using the Gauss-Seidel and Newton-Raphson Method. DistFlow Method which is proposed by Wu and Baran is superior to the other two methods because it does not require the admittance matrix calculation to optimize the distribution system. This paper introduces a new alternative algorithm to the DistFlow Method which is slow and complex to find solutions as the number of lateral and sublateral increases. The proposed load flow method can construct System Jacobian easily. We can minimize the off-diagonal elements of the branch Jacobian and submatrices in the System Jacobian. Simulation results show that progressive performances of the proposed algorithm have a better convergence time.

  • PDF

The Efficient Method of Power Flow Calculation using Object-Oriented Programming (객체지향기법을 이용한 효율적인 조류계산)

  • Kim, Jae-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.4
    • /
    • pp.166-171
    • /
    • 2001
  • Object-oriented programming is a solution for problems in the development, maintenance, and update of large software such as power system analysis software. However, many applications in the electrical industry critically depend on the computational efficiency of the implementation. In order to be flexible and reduce the computation time, this paper represents an efficient method for constructing a Jacobian matrix and for factorizing it, and designs the class hierarchy for power system. This method is applied to four different power systems for load flow calculation. The performance of the object-oriented program developed in C++ is assessed in computer simulation.

  • PDF

Three-phase Load Flow using DistFlow Method (DistFlow Method를 이용한 삼상조류해석 알고리즘에 관한 연구)

  • Kwak, Do-Il;Kim, Tae-Eung;Kim, Jae-Eon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.43-45
    • /
    • 2000
  • Traditionally, load flows have been calculated using the Gauss-Seidel and Newton-Raphson Method. DistFlow Method which is proposed by Wu and Baran is superior to the other two methods because it does not require the admittance matrix calculation to optimize the distribution system. This paper introduces a new alternative algorithm to the DistFlow Method which is slow and complex to find solutions as the number of lateral and sublateral increases. The proposed load flow method can construct System Jacobian easily. We can minimize the off-diagonal elements of the branch Jacobian and submatrices in the System Jacobian. Simulation results show that progressive performances of the proposed algorithm.

  • PDF

Load Flow Calculation and Short Circuit Faults Transients in Dispersed Generation Systems

  • Hosseini, Seyed Hossein;Shahnia, Farhad;Tizghadam, Saeed
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.800-804
    • /
    • 2005
  • Load flow and short circuit fault transients of a power distribution system with wind turbines as dispersed generation units is presented. Usage of renewable energies such as wind is already a small part of total installed power system in medium and low voltage networks. In this paper, a radial power distribution system with wind turbines is simulated using DIgSILENT PowerFactory software for their influence on load flow and short circuit fault transients. Short fault occurring in dispersed generation systems causes some problems for the system and costumers such as fault level increase or the problems of sudden fluctuations in the current, voltage, power and torque of the double fed induction machine utilized in the wind turbines which have been studied and investigated.

  • PDF

Loop Current Calculation based on Voltage Angle Difference at Tie Switch for Switching Plan Validation in Distribution System Operation (상시개방점 양단전압 측정값을 이용한 배전선로 루프운전 가능 여부 판단 방법)

  • Son, Juhwan;Lim, Seongil
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.14-21
    • /
    • 2015
  • Distribution systems are operated in radial structure, but temporal loop structure could be founded the live load transfer. Main purposes of reconfiguration of distribution network are load balancing, loss minimization and voltage drop maintaining. In the loop structure, huge loop current can be flowed between two substations in case of large voltage angle difference. Protection devices of distribution line can be triped by this huge loop current. So, precise calculation of loop current is very important for secure switching. This paper proposes a novel calculation method of loop current using the voltage angle differences measured at the tie switches. Feasibility of the propose method has been verified by various case studies based on Matlab simulation.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

A Study on Verification of PowerRail based on Voltage Drop under Extended Feeding Condition (연장급전 전압강하 계산을 위한 전기철도 급전 시뮬레이터의 검증에 관한 연구)

  • Kim, Joorak
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.331-337
    • /
    • 2015
  • The power flow analysis of electrified railway is required complicated calculation, because of variable load. Train runs trough rail supplied by electric power therefore, the load value in electrified railway system fluctuates along time. The power flow algorithm in electrified railway system is different from general power system, and the power flow simulation is peformed by the particular simulation software. Powerail is simulation software for analysis of traction power supply system developed by KRRI, in 2008. This consists of load forecasting module, including TPS and time scheduling, and power flow module. This software was verified by measured current under normal feeding condition, however, has not been verified by voltage on the condition of extended feeding. This paper presents the verification of PowerRail based on voltage drop under extended feeding condition. This is performed by comparing simulation result with field test. Field test and simulation is done in commercial railway line.