• 제목/요약/키워드: Load deflection curves

검색결과 119건 처리시간 0.024초

Beam-column behavior of concrete filled steel tubes

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.259-276
    • /
    • 2002
  • In the present investigation the experimental and theoretical flexural and compressive behavior of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was examined. For a given length of the members, the effects of different geometry and dimensions of the transverse cross-section (square and circular) were investigated. Constituent materials were characterized through direct tensile tests on steel coupons and through compressive and split tension tests on concrete cylinders. Load-axial shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simplified expressions for the calculus of the load-deflection curves based on the cross-section analysis were given and the ultimate load of short columns was predicted.

A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars

  • Unsal, Ismail;Tokgoz, Serkan;Cagatay, Ismail H.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • 제63권5호
    • /
    • pp.629-637
    • /
    • 2017
  • Continuous concrete beams are commonly used as structural members in the reinforced concrete constructions. The use of fiber reinforced polymer (FRP) bars provide attractive solutions for these structures particularly for gaining corrosion resistance. This paper presents experimental results of eight two-span continuous concrete beams; two of them reinforced with pure glass fiber reinforced polymer (GFRP) bars and six of them reinforced with combinations of GFRP and steel bars. The continuous beams were tested under monotonically applied loading condition. The experimental load-deflection behavior and failure mode of the continuous beams were examined. In addition, the continuous beams were analyzed with a numerical method to predict the load-deflection curves and to compare them with the experimental results. Results show that there is a good agreement between the experimental and the theoretical load-deflection curves of continuous beams reinforced with pure GFRP bars and combinations of GFRP and steel bars.

Prediction of post fire load deflection response of RC flexural members using simplistic numerical approach

  • Lakhani, Hitesh;Singh, Tarvinder;Sharma, Akanshu;Reddy, G.R.;Singh, R.K.
    • Structural Engineering and Mechanics
    • /
    • 제50권6호
    • /
    • pp.755-772
    • /
    • 2014
  • A simplistic approach towards evaluation of complete load deflection response of Reinforced Concrete (RC) flexural members under post fire (residual) scenario is presented in this paper. The cross-section of the RC flexural member is divided into a number of sectors. Thermal analysis is performed to determine the temperature distribution across the section, for given fire duration. Temperature-dependent stress-strain curves for concrete and steel are then utilized to perform a moment-curvature analysis. The moment-curvature relationships are obtained for beams exposed to different fire durations. These are then utilized to obtain the load-deflection plots following pushover analysis. Moreover one of the important issues of modeling the initial stiffness giving due consideration to stiffness degradation due to material degradation and thermal cracking has also been addressed in a rational manner. The approach is straightforward and can be easily programmed in spreadsheets. The presented approach has been validated against the experiments, available in literature, on RC beam subjected to different fire durations viz. 1hr, 1.5hrs and 2hrs. Complete load-deflection curves have been obtained and compared with experimentally reported counterparts. The results also show a good match with the results obtained using more complicated approaches such as those involving Finite element (FE) modeling and conducting a transient thermal stress analysis. Further evaluation of the beams during fire (at elevated temperatures) was performed and a comparison of the mechanical behavior of RC beams under post fire and during fire scenarios is made. Detailed formulations, assumptions and step by step approach are reported in the paper. Due to the simplicity and ease of implementation, this approach can be used for evaluation of global performance of fire affected structures.

강섬유보강 경량 폴리머 콘크리트의 역학적 거동 (Mechanical Behavior of Steel Fiber Reinforced Lightweight Polymer Concretese)

  • 윤준노;성찬용
    • 한국농공학회논문집
    • /
    • 제47권2호
    • /
    • pp.63-72
    • /
    • 2005
  • In this study, the physical and mechanical properties of steel fiber reinforced lightweight polymer concrete were investigated experimentally with various steel fiber contents. All tests were performed at room temperature, and stress-strain curve and load-deflection curve were plotted up to failure. The unit weight of steel fiber reinforced lightweight polymer concrete was in the range of $1,020{\sim}1,160\;kg/m^3$, which was approximately $50\%$ of that of the ordinary polymer concrete, The compressive strength, splitting tensile strength, flexural toughness and flexural load-deflection curves after maximum load were shown with increase of steel fiber content. The stress-strain curves of steel fiber reinforced lightweight polymer concrete were bilinear in nature with a small transition zone, Based on these results, steel fiber reinforced lightweight polymer concrete can be widely applied to the polymer composite products.

강섬유보강 콘크리트 패널에 대한 실험연구 (Experimental Study of Steel Fiber Concrete Panel)

  • 박홍용;임상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.307-310
    • /
    • 1999
  • In this panel test, the toughness and post-cracking tensile strength of SFRC(Steel Fiber Reinforced Concrete) measured on 24 panels(size; 60cm $\times$ 60cm $\times$ 10cm) which are the basic characteristics than can determine the load bearing capacity of SFRC are investigated. Those values are calculated using load-deflection curves and load-absorbed energy curves. Post-cracking tensile strength of SFRC in this study are determined by yield line theory. From the test results, it is seen that the higher the volume of steel fiber is, the higher the absorbed energy is.

  • PDF

A proposed set of popular limit-point buckling benchmark problems

  • Leahu-Aluas, Ion;Abed-Meraim, Farid
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.767-802
    • /
    • 2011
  • Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developers must reconstruct by extracting the points, a procedure which is often tedious and inaccurate. Moreover the curves are usually given without accompanying information such as the calculation time or number of iterations it took for the model to converge, even though this type of data is equally important in practice. This paper presents ten different limit-point buckling benchmark tests, and provides for each one the reference load-deflection curve, all the points necessary to recreate the curve in tabulated form, analysis data such as calculation time, number of iterations and increments, and all of the inputs used to obtain these results.

Graphite/Epoxy 스트링거의 크리플링 실험 (Crippling Test of Graphite/Epoxy Stringers)

  • 최상민;권진회
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.157-160
    • /
    • 2000
  • In author's previous paper, a finite element algorithm was presented to calculate the buckling and crippling stresses of composite laminated stringers. In this study, for the validation of the finite element analysis, Z-section composite stringers of different lengths and flange-widths were tested in axial compression. The stacking sequence of graphite/epoxy is [$\pm$45/0/90]s. Strain gages were attached to each specimen to get the strain response. Deflection and end-shortening were obtained by a displacement transducer. The buckling and crippling loads are determined from the strain response, load vs. end-shortening curves, and load vs. out-of-plane deflection curves. Comparison between finite element and experimental results shows good agreement in the buckling, local buckling, and crippling stresses.

  • PDF

탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발 (Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets)

  • 김성도;김성수
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC

  • Turk, Kazim;Kina, Ceren;Oztekin, Erol
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.257-269
    • /
    • 2020
  • The aim of this study is to investigate the flexural performance of hybrid fiber reinforced self-compacting concrete (HFRSCC) having different ratio of micro and macro steel fiber. A total of five mixtures are prepared. In all mixtures, the sum of the steel fiber content is 1% and also water/binder ratio is kept constant. The amount of high range water reducer admixture (HRWRA) is arranged to satisfy the workability criteria of self-compacting concrete. Four-point bending test is carried out to analyze the flexural performance of the mixtures at 28 and 56 curing days. From the obtained load-deflection curves, the load carrying capacity, deflection and toughness values are investigated according to ASTM C1609, ASTM C1018 and JSCE standards. The mixtures containing higher ratio of macro steel fiber exhibit numerous micro-cracks and, thus, deflection-hardening response is observed. The mixture containing 1% micro steel fiber shows worst performance in the view of all flexural parameters. An improvement is observed in the aspect of toughness and load carrying capacity as the macro steel fiber content increases. The test results based on the standards are also compared taking account of abovementioned standards.

Z-단면 Graphite/Epoxy 스트링거의 크리플링 실험 (Crippling Test of Z-section Graphite/Epoxy Stringers)

  • 최상민;권진희
    • Composites Research
    • /
    • 제14권3호
    • /
    • pp.32-41
    • /
    • 2001
  • 본 연구에서는 Z-단면 복합재 스트링거에 대한 크리플링 실험을 수행하여, 선행 연구에서 제시한 복합재 스트링거의 크리플링 해석을 위한 유한요소 알고리즘의 타당성을 검증하였다. 시편은 길이와 플렌지 폭이 다른 Z-단면 탄소/에폭시 복합재 스트링거로서 적층순서는 $[{\pm}45/0/90]s$이다. 시편의 부분좌굴 응력과 좌굴후 크리플링까지의 거동을 연구하기 위해 모든 시편에 스트레인 게이지를 부탁하였고, 처짐과 변위는 LVDT로 측정하였다. 좌굴하중은 하중-변형률 곡선, 하중-처짐 곡선 및 하중-축변위 곡선 등으로부터 구하였고, 크리플링 응력은 시편의 최대하중에서 단면적을 나눈 값으로 정의하였다. 제시된 유한요소 방법에 의한 부분좌굴 및 크리플링 음력은 실험에 의한 결과와 최대 15 % 이내의 오차로 매우 잘 일치하였다.

  • PDF