• Title/Summary/Keyword: Load change

Search Result 2,519, Processing Time 0.036 seconds

LDO Regulator with Improved Regulation Characteristics and Feedback Voltage Buffer Structure (Feedback Buffer 구조 및 향상된 Regulation 특성을 갖는 LDO regulator)

  • Jung, Jun-Mo;Park, Tae-Ryong
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.462-467
    • /
    • 2022
  • The feedback buffer structure is proposed to alleviate the overshoot and undershoot phenomenon and the regulation of the output voltage. The conventional LDO regulator undergoes a regulation voltage change caused by a constant load current change. An LDO regulator with a feedback voltage sensing structure operates in the input voltage range of 3.3 to 4.5 V and has a load current of up to 150 mA at output voltage of 3 V. According to the simulation results, a regulation value of 6.2 mV was ensured when the load current uniformly changed to 150 mA.

A Bed Level Change Model(SED-FLUX) by Suspended Sediment Flux and Bed Load Flux in Wave-Current Co-existing Fields (파-흐름 공존장에서 부유사와 소류사 flux에 의한 지형변화모델)

  • Lee, Jong Sup;Yoon, Eun Chan;Park, Seok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3B
    • /
    • pp.311-319
    • /
    • 2006
  • A bed level change model(SED-FLUX) is introduced based on the realistic sediment transport process including bed load and suspended load behaviours at the bottom boundary layer. The model SED-FLUX includes wave module, hydrodynamic module and sediment transport and diffusion module that calculate suspended sediment concentration, net sediment erosion flux($Q_s$) and bed load flux. Bed load transport rate is evaluated by the van Rijn's TRANSPOR program which has been verified in wave-current fields. The net sediment erosion flux($Q_s$) at the bottom is evaluated as a source/sink term in the numerical sediment diffusion model where the suspended sediment concentration becomes a verification parameter of the $Q_s$. Bed level change module calculates a bed level change amount(${\Delta}h_{i,j}$) and updates a bed level. For the model verification the limit depth of the bed load transport is compared with the field experiment data and some formula on the threshold depth for the bed load movement by waves and currents. This model is applied to the beach profile changes by waves, then the model shows a clear erosion and accumulation profile according to the incident wave characteristics. Finally the beach evolution by waves and wave-induced currents behind the offshore breakwater is calculated, where the model shows a tombolo formation in the landward area of the breakwater.

A study on suspension state matrix to improve load/unload performance (로드/언로드 성능향상을 위한 서스펜션 상태행렬 연구)

  • Lee, Yong-Hyun;Kim, Ki-Hoon;Kim, Seok-Hwan;Park, No-Cheol;Park, Young-Pil;Park, Kyoung-Su;Kim, Cheol-Soon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • Most hard disk drives that apply the ramp load/unload technology unload the heads at the outer edge of the disk while the disk is rotating. The load/unload includes the benefits as like an increased areal density, a reduced power consumption and an improved shock resistance. A lot of papers investigating the effects of the various load/unload parameters such as a suspension tab, a limiter, a ramp and air-bearing surface designs have been published. However, in previous researches, an effect of the suspension is not considered at each load/unload step. In this paper, we focus that a variation of the state matrix affects the load/unload performance on based on a state matrix that is a stiffness matrix of the suspension. Because the state matrix is related to the suspension at each load/unload step, to change the state matrix means the structural change of the suspension. Therefore, we investigated a range of a pitch static attitude(PSA) and a roll static attitude(RSA) for load/unload performance. We also analyzed an effect of the variation of the state matrix a range of load/unload velocity occurred a slider-disk contact. We determined the variation of the state matrix to improve the load/unload performance through comparison of each factor of state matrix.

  • PDF

The effects of knee joint position sense following local and general load protocols (국소적 부하와 전신적 부하가 슬관절 위치 감각에 미치는 영향)

  • Hwang, Yoon-Tae;Park, Rae-Joon;Choi, Jin-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.17 no.3
    • /
    • pp.429-440
    • /
    • 2005
  • The purpose of this study was to compare the effects of knee joint position sense following local and general load protocols in 25 healthy male subjects. Proprioception of the knee joint was evaluated by measuring absolute angular errors at matching angles before, after and between 2 different types of load protocols. Proprioception tests(on the dominant knee) were performed in which proprioception of the passivepassive reproduced and active-active reproduced knee position was measured. Local load was provided with maximum isokinetic knee extension-flexion on the isokinetic dynamometer(Cybex), and general load was 10 minutes running on a treadmill. Peak torque(knee extension and flexion) and heart rate(beats per minute) was evaluated as an indicator of local and general fatigue during load protocols. The results were as follows: 1. For pasive-pasive reproduced knee position test, significant difference in absolute angular errors after general load protocol was detected compared with that before general load protocol(P<.05), significant difference in absolute angular errors after local load protocol was detected compared with that before local load protocol(P<.05). However, no significant difference in absolute angular errors of general load protocol was detected compared with that of local load protocol (P>.05), no significant difference in absolute angular errors of local load protocol was detected compared with that of general load protocol(P>.05). 2. For active-active reproduced knee position test, significant difference in absolute angular errors after general load protocol was detected compared with that before general load protocol(P<.05), significant difference in absolute angular errors after local load protocol was detected compared with that before local load protocol (P<.05). Also, significant difference in absolute angular errors of general load protocol was detected compared with that of local load protocol(P<.05), significant difference in absolute angular errors of local load protocol was detected compared with that of general load protocol(P<.05). 3. A significant decrease of peak torque of knee extensors and flexors was seen after local load, although heart rate was significantly increased(P<.05). No significant change of peak torque of knee extensors and flexors was seen after general load(P>.05), although heart rate was also significantly increased(P<.05). The previous study revealed that knee proprioception is significantly altered when the muscle mechanoreceptors are dysfunctional due to muscle fatigue, although the joint mechanoreceptors have no significantly effect on knee proprioception when the presence of knee muscle fatigue. However, the results of this study are different from those of the previous study in that muscle weakness of the knee could not be seen after general load. This study shows that general load may diminish motor control by the central nervous system. Proprioceptional decline without muscle weakness of knee after general load suggests a change in the proprioceptional pathway without influence from muscle mechanoreceptors.

  • PDF

Does Strategy of Downward Stepping Stair Due to Load of Additional Weight Affect Lower Limb's Kinetic Mechanism?

  • Ryew, Checheong;Yoo, Taeseok;Hyun, Seunghyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.26-33
    • /
    • 2020
  • This study measured the downward stepping movement relative to weight change (no load, and 10%, 20%, 30% of body weight respectively of adult male (n=10) from standardized stair (rise of 0.3 m, tread of 0.29 m, width of 1 m). The 3-dimensional cinematography and ground reaction force were also utilized for analysis of leg stiffness: Peak vertical force, change in stance phase leg length, Torque of whole body, kinematic variables. The strategy heightened the leg stiffness and standardized vertical ground reaction force relative to the added weights (p<.01). Torque showed rather larger rotational force in case of no load, but less in 10% of body weight (p<.05). Similarly angle of hip joint showed most extended in no-load, but most flexed in 10% of body weight (p<.05). Inclined angle of body trunk showed largest range in posterior direction in no-load, but in vertical line nearly relative to added weights (p<.001). Thus the result of the study proved that downward stepping strategy altered from height of 30 cm, regardless of added weight, did not affect velocity and length of lower leg. But added weight contributed to more vertical impulse force and increase of rigidity of whole body than forward rotational torque under condition of altered stepping strategy. In future study, the experimental on effect of weight change and alteration of downward stepping strategy using ankle joint may provide helpful information for development of enhanced program of prevention and rehabilitation on motor performance and injury.

Hydrologic Performance Change of Small Scale Hydro Power Plant with Rainfall Condition Change (강우형태변화에 의한 소수력발전소 수문학적 성능의 변화)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.6
    • /
    • pp.56-61
    • /
    • 2009
  • The effects of design parameters for small scale hydro power(SSHP) plants due to climate change have been studied. The model to predict hydrologic performance for SSHP plants is used in this study. The results from analysis far rainfall conditions based on KIER model show that the capacity and load factor of SSHP site had large difference between the period. Especially, the hydrologic performance of SSHP site due to rainfall condition of recent period varied in design flowrate sensitively. However climate change gave small effect in load factor of existing SSHP plant. And also, the methodology represented in this study can be used to decide the primary design specifications of SSHP sites.

Efficient Auto Measure Sampling Method for Semiconductor Line (반도체 라인의 효율적 계측을 위한 자동 계측 샘플링 방식에 관한 연구)

  • Kim, Tae-Yeob;Sun, Dong-Seok;Lee, Jee-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2505-2510
    • /
    • 2009
  • Semiconductor processes need measurement to confirm where there are problems in quality after progresses manufacturing process. This paper suggests equipment and automatic measure sampling method that control monitoring ratio according to change point occurrence availability of process that is not measure method by the existent simple ratio rate. This paper defines measure section as ailment section, metastable section and stability section by change point standard and create statistical model of each section and developed suitable measure rate model by section. As a result, we have accomplished maximum throughput and minimum sampling number that needs to maintain constant level of quality. Proposed method minimizes load of measure process by brings production quality sophistication and decrease of process badness and lowers measure rate in stable section making perception about problem occurrence quick heightening measure rate at change point occurrence.

Climate change and design wind load concepts

  • Kasperski, Michael
    • Wind and Structures
    • /
    • v.1 no.2
    • /
    • pp.145-160
    • /
    • 1998
  • In recent years, the effects of a possible climate change have been discussed in regard to wind loading on buildings and structures. Simple scenarios based on the assumption of global warming suggest an increase of storm intensities and storm frequencies and a possible re-distribution of storm tracks. Among recent publications, some papers seem to verify these scenarios while others deny the influence of climatic change. In an introductory step, the paper tries to re-examine these statements. Based on meteorological observations of a weather station in Germany, the existence of long-term trends and their statistical significance is investigated. The analysis itself is based on a refined model for the wind climate introducing a number of new basic variables. Thus, the numerical values of the design wind loads used in modern codes become more justified from the probabilistic point of view.

An Experimental Study on the Load Carrying Capacity and Deformation Properties of Steel Fiber Reinforced Concrete Slab (강섬유보강 콘크리트 슬래브의 내력 및 변형특성에 관한 실험적 연구)

  • 박승범;조광연;신동기;장석호;김부일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.327-332
    • /
    • 1997
  • This study is aimed to investigate the effect of load and deflection on steel fiber reinforced concrete slab. Slabs were made with Hooked and Straight types steel fiber and compared a change of steel fiber contents and fiber types. Test were carried out to evaluate he first crack load, maximum load and deflection of slab. At the result, the first crack load, maximum load and energy absorption capacity were increased remarkably as steel fiber contents wee increased. And we found that the deflection of slab at same load ere decreased as steel fiber contents were increased, too. As the aspect ration was increased, the first crack load, maximum load and energy absorption capacity were increased.

  • PDF

Study on Heating Load Characteristics and Thermal Curtain Effects for Simple Silkworm Rearing Houses(I) -Heating Load Coefficient and Maximum Heating Load- (간이잠실(簡易蠶室)의 난방(暖房) 부하특성(負荷特性) 및 보온(保溫)커튼 설치효과(設置効果)에 관(關)한 연구(硏究)(I) -간이잠실(簡易蠶室)의 난방(暖房) 부하계수(負荷係數) 및 최대(最大) 난방부하(暖房負荷)-)

  • Choe, K.J.;Lee, D.H.;Park, K.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.4
    • /
    • pp.346-354
    • /
    • 1990
  • In order to provide basic references for the design of heating on simple silkworm rearing house, the actual change of heating load coefficient by progress of adult silkworm rearing day from the reared in silkworm rearing house, the heating load coefficient by types of silkworm rearing houses and the heating requirement and the maximum heating load by types of silkworm rearing houses were determined. The results obtained from the study were as follows : 1. The average heating load coefficients of NS, OS and CC type simple silkworm rearing houses were $24.1KJ/m^2-hr-^{\circ}C$, $19.8KJ/m^2-hr-^{\circ}C$, and $10.8KJ/m^2-hr-^{\circ}C$, respectively. 2. The change of heating load coefficient by progress of silkworm rearing day after reared into simple silkworm rearing house could be expressed as Fig. 4. 3. Heating degree-hour for adult silkworm rearing in Suweon district was calculated as $951.6^{\circ}C-hr$ for spring season and $610.5^{\circ}C-hr$ for autumn season. 4. Yearly heating requirement of the NS type was estimated twice more than that of the CC type. Thus, some kinds of reinforced thermal adiabatic facilities is desirable for NS type. 5. The time for maximum heating load was turned out at the 4th instar during the spring season and after the mounting during the autumn season. 6. This study was performed in Suweon district. However, the estimated and analyzed data could be adapted to the major silkworm rearing district if their meteorology data were adjusted.

  • PDF