• Title/Summary/Keyword: Load cell sensor

Search Result 124, Processing Time 0.031 seconds

A Feasibility Study of Constitution Discrimination Using a Measurement Device for Dynamic Friction Coefficients of the Back of a Hand (손등피부 운동 마찰계수 측정기를 이용한 체질 판별 가능성 연구)

  • Kim, Keun-Ho;Woo, Yung-Jae;Lee, Hae-Jung;Lee, Yu-Jung;Kim, Jong-Yeol
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.4
    • /
    • pp.20-29
    • /
    • 2010
  • 1. Objectives Our goal is to observe the feasibility of constitution discrimination from computing quantitative roughness index from dynamic friction coefficients and their gradients with the measurement device of skin friction with 3-Axis load cell sensor. 2. Methods In the traditional Korean medicine, skin diagnosis is one of the examination methods to discriminate Sasang constitution since it was known that Tae-eumin has rough skin, and Soyangin has smooth one. It is based on the skin roughness on the back of one's hand for the discrimination. The measurement device of skin friction with 3-axis load cell sensor has been developed in order to provide quantitative skin roughness through dynamic friction coefficients. The effective interval of the coefficients is obtained from the automatic sampling algorithm to use their curvature and slope. Then, Fisher's discriminant function of them makes the discrimination. 3. Results The success rate of extracting the effective interval was about 90% and the discriminant accuracy between Tae-eumin and Soyangin was 70% and 68% for men and women, respectively. The entire methods showed the possibility to distinguish between Tae-eumin and Soyangin by using stochastic properties of roughness index, which can make the entire system to include the measurement, the computation of the roughness index and the discrimination of constitution automatical. 4. Conclusions The measurement device, the automatic sampling algorithm of dynamic friction coefficients and the constitution discrimination algorithm were developed, respectively, and their combination can become the serial and automatic procedure for quantitative and objective skin diagnosis, which mimics the movement of the Oriental medical doctors' skin diagnosis. It can be applied to healthcare as well as the diagnosis of constitution in a u-Health system soon.

Development of Autonomous Logistics Transportation System using Raspberry Pi (라즈베리파이를 이용한 자율물류 운반 시스템 개발)

  • Kang, Young-Hoon;Park, Chang-Hyeon;Lee, Min-Woo;Kim, Da-Eun;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.125-132
    • /
    • 2022
  • In this paper, we presented a cart which can automatically transport loads to the distribution center of the appointed indoor place, based on Raspberry pi 4. It can recognize the obstacles by using the ultrasonic sensors so that it prevents the collision and takes a detour. Further, we entered the direction control code in the RFID. It has installed at important points such as the intersections of the destinations, so that if the RFID reader of the cart senses the RFID, the cart would stop or change the direction. After the transportation, if the load cell(weight sensor) recognizes that the baggage is unloaded, the cart returns to the initial point and would be retrieved. Therefore, we embodied the transportation cart which reduces the use of manpower and solves the problems conveniently across the transportation strategies.

Constitutional Classification between Tae-eumin and Soyangin Types by Measurement of the Friction Coefficient on the Skin of the Human Hand (손등 피부 마찰계수를 이용한 태음인과 소양인 간의 체질구별)

  • Song, Han-Wook;Park, Yon-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.5
    • /
    • pp.52-61
    • /
    • 2010
  • The use of the friction coefficient is known to provide good discrimination ability in the classification of human constitutions, which are used in alternative medicine. In this study, a system that uses a multi-axis load cell and a hemi-circular probe is designed. The equipment consists of a sensor (load cell type, manufactured by the authors), an x-axis linear-bush guide motorized mobile stage that supports the hand being analyzed, and a signal conditioner. Using the proposed system, the friction coefficients from different constitutions were compared, and the relative repeatability error for the friction coefficient measurement was determined to be less than 2 %. The direction along the ring finger line was determined to be the optimum measurement region for a constitutional diagnosis between Tae-eumin and Soyangin types using the proposed system. There were some differences in the friction coefficient between the two constitutions, as reported in ancient literature. The proposed system is applicable to a quantitative constitutional diagnosis between Tae-eumin and Soyangin types within an acceptable level of uncertainty.

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

Development of Clamping Force Estimation Algorithm and Clamp-force Sensor Calibration on Electromechanical Brake Systems (전동식 브레이크 시스템의 클램핑력 센서 교정 및 클램핑력 추정 알고리즘 개발)

  • Park, Giseo;Choi, Seibum;Hyun, Dongyoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.365-371
    • /
    • 2016
  • The electromechanical brake (EMB) is one of future brake systems due to its many advantages. For implementation of the EMB, the correct feed back about clamping force is necessary. Keeping commercialization of the EMB in mind, it is strongly demanded that an expensive load cell measuring the clamping force is replaced with an estimation algorithm. In addition, an estimation of the kissing point where the brake pads start to come into contact with a disk wheel is proposed in this paper. With these estimation algorithms, the clamping force can be expressed as a polynomial characteristic curve versus the motor angle. Also, a method for calibration of measured values by the load cell is proposed and used for an actual characteristic curve. Lastly, the performance of the proposed algorithms is evaluated in comparison with the actual curve on a developed EMB test bench.

Development of Grip Strength Training and Evaluation System of Hand Functions (악력 훈련 및 평가를 위한 측정 시스템 개발에 관한 연구)

  • Kang, Han-Su;Chung, Sung-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.611-617
    • /
    • 2009
  • The primary purpose of this study was to analysis quantitatively the degree of injury and/or the progress of treatment for physical impairment. This study provided a more detailed study that evaluates all test parameters including maximum grip strength, duration of operation, average grip strength, acceleration work, dynamic endurance time and percent change in static endurance. Also, a complete database management system is developed and used to store related training, evaluation, and personal information. In addition, the system is developed a grip sensor using load.cell transducer (${\leq}60kg$). The system will be efficient to operate and convenient to use, furthermore, it can be helped for understanding and analysis the progress of a patient during a doctor's rehabilitation program.

Development of Self-Diagnostic Smart Concrete (자가진단형 스마트 콘크리트 개발)

  • Kim Wha-Jung;Kim Ie-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.82-88
    • /
    • 2006
  • In People usually think that smart materials and smart structures have not been developed until recent years. But those kinds of sensors have already been used for sensing damage in a variety of materials and structures. Two typical examples are piezoelectric materials (e.g., PZT) and electric strain gauges. Load cell is an example that utilizes the piezoelectric property to measure the change in physical quantities occurred by applied loads, while strain gauges are used to measure the deformation of compressive and tension members. The feasibility of using smart materials is realized for a monitoring technology when those sensors are used to monitor damages at inside or outsider of the structures. In this study, a fundamental study on the development of self diagnostic smart concrete using PZT, and unsaturated polyester electric resistance sensor.

  • PDF

A Power Management Unit for Solar Energy Harvesting (빛 에너지 하베스팅을 위한 전력관리회로)

  • Yoon, Eun-Jung;Hwang, In-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.267-271
    • /
    • 2012
  • In this paper a power management unit for solar energy harvesting is proposed. If solar energy is sufficient, Power Management Unit(PMU) directly supplies load with solar energy. By contrast, if solar energy is insufficient to operate sensor nodes, voltage booster(VB) boosts the solar cell's output voltage, and then PMU supplies load with the harvested energy. The designed circuit had been fabricated using a 018um CMOS process. In the first case, the PMU supplies load with more energy than in the second case. In the second case where a VB is used, the PMU operates to supply load with solar energy even when illumination is low and minimum solar cells with very low output voltage are used.

  • PDF

A Passive Visible Light Transponder Using an LED for an Optical Transceiver (LED를 광송수신 소자로 사용한 수동형 가시광 트랜스폰더)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.232-238
    • /
    • 2015
  • In this paper, we introduce a passive transponder in which an LED is used for both a light transmitter and a receiver, and a solar cell is used for supplying power to the all devices in the transponder. The LED in the transponder operates as a photodetector in the receiving mode, and acts as a light source in the transmitting mode. The current responsivity of the LED detector was measured to be in the order of $10^{-4}A/W$, and the receiving bandwidth with a load resistance of $10k{\Omega}$ was about 10 to 30 kHz. Using the LED for an optical transceiver in a VLID transponder, the detection range was about 70 cm when the transponder was illuminated by the visible light from a $3{\times}3$ LED array in a reader.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.