• Title/Summary/Keyword: Load case

Search Result 3,586, Processing Time 0.029 seconds

Adhesive Strength in Tension of SBR-Modified Cement Mortar with Self-Flowability Material for Floor-Finishing (자기 평활성 바닥 마감용 SBR 시멘트 모르타르의 인장부착강도)

  • Do, Jeong-Yun;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.549-556
    • /
    • 2003
  • Various researches on the application of polymer dispersions to the cement mortar and concrete have been practised in many countries like America, Japan and Germany and so on because of high performance and good modification effect of these. In this study, SBR, Polymer dispersion that widely used in situ is employed that the self-flowability may be induced in the cemen mortar. In order to comprehend and investigate the modification of cement mortar with self-flowability by SBR and properties and fracture mode of adhesive strength in tension of that, experimental parameter was set as SBR solid-Cement ratio(S/C) and Cement:Fine aggregate(C:F) and the experiments such as Unit weight, Flow, Consistency change, Crack resistance and Segregation that inform on the general properties have been done. In addition of that, Adhesion in tension is measured with a view to comprehending the properties and fracture mode in tensile load. Consistency change of cement mortar modified by SBR did grow better as the ratio of SBR solid-Cement increased and was much superior to that of resin based flooring such as polyurethane and epoxy which recorded the loss of consistency in 90min. after mixing. Adhesive strength in tension increased with continuity in the curing age and showed the maximum in case of C:F=1:1 and S/C=20%. As the increase of curing age, the fracture mainly happened in the concrete substrate and the interface between the specimen and concrete substrate.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Screw Loosening of Various Implant Systems (수종의 임플랜트 시스템의 나사풀림에 관한 연구)

  • Ahn, Jin-Soo;Cho, In-Ho;Lim, Ju-Hwan;Lim, Heon-Song
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.2
    • /
    • pp.81-91
    • /
    • 2002
  • Dental implant systems have shown many post-surgical problems and One of the most frequent problem is screw loosening. To reduce screw loosening, a number of methods have been tried and recently fundamental modification of fixture-abutment connection structure was developed and used the most frequently. Former implant system structure, such as Br${\aa}$nemark, had external hex with the height of 0.7 mm and later, fixture with external hex of 1.0 mm height and internal hex structure were developed. In addition, the method of morse taper application was introduced to reduce screw loosening. In this study, the level of screw loosening of each implant systems was compared based on the vibration loosening measurement of abutment screw of each implant systems. Analysis of measured value was performed using 3 kinds of methods, (i) Percentage of average of initial 3 times loosening-torque value(initial loosening value) to tightening-torque of 30 Ncm, (ii) Percentage of loosening-torque value after 200 N strength loaded(experimental value) to initial loosening value and (iii) Percentage of experimental value to 30 Ncm of tightening-torque. Each result of analyses shows the value of initial loosening, loosening by repetitive load and final loosening level. The results of this study were as follows. (1) Percentage of initial loosening value to tightening-torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper and all values between each groups showed statistical significance (p<0.05). (2) Percentage of experimental value to initial loosening value was increased in order of internal hex, 0.7 mm external hex, 1.0 mm external hex and internal taper. Value of internal taper showed significant difference with that of 0.7 mm external hex and internal hex (p<0.05). (3) Percentage of experimental value to tightening torque was increased in order of 0.7 mm external hex, 1.0 mm external hex, internal hex and internal taper. Values of all groups showed statistical significance (p<0.05) except between the groups of 1.0 mm external hex and internal hex. Based on those results, there was no significant difference of loosening-torque by repetitive loading except internal taper. It is supposed that implant system with high resistant capability against initial loosening could be recommended for clinical use. In addition, in case of single implant restoration, 1.0 mm external hex or internal hex could be recommended rather than 0.7 mm external hex, and the use of internal taper would be the most useful way to reduce screw loosening.

Analyzing Environmental Impacts in Construction Project at Different Ownership - Focus on Express Road Pavement Process - (공공발주자와 민간기업 측면의 건설공사 온실가스 환경비용 영향분석 - 고속도로 포장공종을 중심으로 -)

  • Jang, Woo Sik;Park, Heedae;Han, Seung Heon;Jeon, Jong Seo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.111-117
    • /
    • 2011
  • In the wake of increased concerns on reduction of greenhouse emission which started with United Nation's Framework Convention on Climate Change (UNFCCC) and Kyoto protocol, Korean government is making various efforts under the represented slogan "Low Carbon, Green Growth". Therefore, it is inevitable that construction industry also follow the Korea government's slogan and the international trend in environmental problems. This study identified several main construction materials and equipments of civil construction projects and suggested a environmental cost estimation method and related estimation standards (Public and private owners are distinguished). A case analysis of a real road construction project is also performed and characteristics according to the owner type is compared. This study analyzed the environmental impact to total construction cost variations. In the result, public owner required 11~16% of extra budget and private owner required 19~22% of extra costs. This study is limited in consideration of environmental factors and carbon trading prices.

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.

Performance Comparison of Spatial Split Algorithms for Spatial Data Analysis on Spark (Spark 기반 공간 분석에서 공간 분할의 성능 비교)

  • Yang, Pyoung Woo;Yoo, Ki Hyun;Nam, Kwang Woo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.29-36
    • /
    • 2017
  • In this paper, we implement a spatial big data analysis prototype based on Spark which is an in-memory system and compares the performance by the spatial split algorithm on this basis. In cluster computing environments, big data is divided into blocks of a certain size order to balance the computing load of big data. Existing research showed that in the case of the Hadoop based spatial big data system, the split method by spatial is more effective than the general sequential split method. Hadoop based spatial data system stores raw data as it is in spatial-divided blocks. However, in the proposed Spark-based spatial analysis system, there is a difference that spatial data is converted into a memory data structure and stored in a spatial block for search efficiency. Therefore, in this paper, we propose an in-memory spatial big data prototype and a spatial split block storage method. Also, we compare the performance of existing spatial split algorithms in the proposed prototype. We presented an appropriate spatial split strategy with the Spark based big data system. In the experiment, we compared the query execution time of the spatial split algorithm, and confirmed that the BSP algorithm shows the best performance.

The behavior of strength on friction welding of dissimilar steels by various heating time : in case of SM45C and SUS304 materials (이종강의 마찰압접시 압접시간 변화에 따른 강도거동-SM45C와 SUS304재의 경우)

  • 박명과;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.762-771
    • /
    • 1987
  • Friction welding is a fusion process in which the necessary heat is generated by clamping one of the two pieces to be welded in a stationary chuck and rotating the other at high speed with an axially applied load. It is essentially a variation of the pressure welding process but utilizes a novel heating method. In addition to the foregoing advantages, it has also been reported excellent for welding dissimilar materials. Therefore, this study reported on investigating the strength behavior for the frictionally welded domestic structural steel SM45C and SUS304. The results obtained by the experiments are as follows. (1) The highest tensile strength of the best friction welded specimen (B4) is about 3% lower than that of SM-45C base metal, and 9% lower than that of SUS304 base metal. The heat treated specimens (850.deg.C 1hr A.C) have almost same value of tensile strength. (2) The strain of SM45C base metal is 27.3% and that of SUS304 is 42%, that of the best friction welded specimen (B4) appeared as 11.9% which is about 50% lower than the base metal, so, this same phenomenon apeared in all the other welding conditions. (3) The bending strength of SM45C base metal is 123kgf/mm$^{2}$ and that of SUS304 is 127kgf/mm$^{2}$. The best specimen (B4) appeared as 121kgf/mm$^{2}$ which is almost same bending strength for both base metals. (4) The friction welded condition involving maximum strength is determined by P$_{1}$=8kgf/mm$_{2}$, P$_{2}$=22kgf/mm$_{2}$, T$_{1}$=10sec, T$_{2}$=2sec, and amount of upset 7.6mm. (5) The interface of two dissimilar materials are mixed strongly, and welded zone is about 1.03mm and also the heat affected zone is about 2.36mm at SM45C while about 1.85mm at SUS304, therefore the welded zone and heat affected zone are very narrow to compare with those of the other welding materials.

Fundamental Heat Analysis about the Thermoelectric Generation System Using the Waste Heat of Exhaust Gas from Ship (선박의 배기가스 폐열을 활용한 열전발전시스템에 관한 기초 열해석)

  • Kim, Myoung-Jun;Ga, Gwang-Jin;Chea, Gyu-Hoon;Kim, In-Seup
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.583-592
    • /
    • 2016
  • IMO (International Maritime Organization) in the UN (United Nations) set up that aim at reducing $CO_2$ emission from ship by up to 30 percent until 2030. The final purpose of this study is the development of marine thermoelectric generation system using waste heat from vessel of internal combustion engines. Before the development of marine thermoelectric generation system, this paper carried out the fundamental heat analysis of marine thermoelectric generation system. It was able to obtain the valuable results about the efficiency improvement of the thermoelectric generation system. The results is as follows : 1) It was confirmed that the efficiency of thermoelectric generation system improves to 8.917 % with increasing the temperature difference of peltier module by reducing the temperature difference between peltier module and heat source at the hot side. 2) System efficiency according to change in the external load resistance was confirmed that the change width of about 6 % which does not significantly occur. 3) System efficiency in the case stainless steel at the same condition is 8.707 %. System efficiency could be confirmed that the stainless steel is higher than duralumin (8.605 %), copper (8.607 %).

Performance-based wind design of tall buildings: concepts, frameworks, and opportunities

  • Bezabeh, Matiyas A.;Bitsuamlak, Girma T.;Tesfamariam, Solomon
    • Wind and Structures
    • /
    • v.31 no.2
    • /
    • pp.103-142
    • /
    • 2020
  • One of the next frontiers in structural wind engineering is the design of tall buildings using performance-based approaches. Currently, tall buildings are being designed using provisions in the building codes and standards to meet an acceptable level of public safety and serviceability. However, recent studies in wind and earthquake engineering have highlighted the conceptual and practical limitations of the code-oriented design methods. Performance-based wind design (PBWD) is the logical extension of the current wind design approaches to overcome these limitations. Towards the development of PBWD, in this paper, we systematically review the advances made in this field, highlight the research gaps, and provide a basis for future research. Initially, the anatomy of the Wind Loading Chain is presented, in which emphasis was given to the early works of Alan G. Davenport. Next, the current state of practice to design tall buildings for wind load is presented, and its limitations are highlighted. Following this, we critically review the state of development of PBWD. Our review on PBWD covers the existing design frameworks and studies conducted on the nonlinear response of structures under wind loads. Thereafter, to provide a basis for future research, the nonlinear response of simple yielding systems under long-duration turbulent wind loads is studied in two phases. The first phase investigates the issue of damage accumulation in conventional structural systems characterized by elastic-plastic, bilinear, pinching, degrading, and deteriorating hysteretic models. The second phase introduces methods to develop new performance objectives for PBWD based on joint peak and residual deformation demands. In this context, the utility of multi-variate demand modeling using copulas and kernel density estimation techniques is presented. This paper also presents joined fragility curves based on the results of incremental dynamic analysis. Subsequently, the efficiency of tuned mass dampers and self-centering systems in controlling the accumulation of damage in wind-excited structural systems are investigated. The role and the need for explicit modeling of uncertainties in PBWD are also discussed with a case study example. Lastly, two unified PBWD frameworks are proposed by adapting and revisiting the Wind Loading Chain. This paper concludes with a summary and a proposal for future research.

A Fast Multipoint-to-Point LSP Traffic Engineering for Differentiated Service in MPLS Networks (MPLS 망에서 차별화 된 서비스를 제공하기 위한 빠른 Multipoint-to-Point LSP 결정 방식)

  • Kim, Seong-Gwan;Jo, Yeong-Jong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.5
    • /
    • pp.232-242
    • /
    • 2002
  • In a MPLS(Multiprotocol Label Switching) network, it is important to reduce the number of labels and LSP(Lable Switched Path)s for network resource management. MTP(Multipoint-to-Point) LSP can be used to solve this problem. In consideration of traffic engineering, MTP LSP must be chosen to enhance the availability of network and link utilization. Also, a fast mechanism to setup MTP LSPs is required for rerouting capability against link failure. In this paper, we propose a fast MTP LSP traffic engineering of multipath MTP LSP by using a mapping of a MTP LSP upon Diffserv PHBs(Per Hop Behavior) in a Diffserv-capable MPLS network. In the proposed traffic engineering, we determine multiple MTP LSPs in a hierarchical manner according to the characteristics of different services. By using Monte-Carlo method for traffic load balancing process, it provides fast rerouting capability in case of frequent link failure across large network. Out method produces to be nearly optimal within reasonable run-times. It's time complexity is in O( Cn$^2$logn) as conventional multipath routing and it is much faster than Linear Programming approach. Simulation results show that the proposed traffic engineering can be controlled effectively in an administrative manner and enhance the availability of network in comparison with conventional multipath routing.