• 제목/요약/키워드: Load case

Search Result 3,587, Processing Time 0.03 seconds

Case Study of Investment Adequacy Analysis After Implementing Master Plan on Sewerage Rehabilitation (하수도정비기본계획 시행 후의 투자적정성 분석에 관한 사례 연구)

  • Park, Kyoo-Hong;Kang, Byong-Jun;Lym, Byeong-In;Knag, Man-Ok;Park, Joo-Yang;Kim, Sung-Tae;Park, Wan-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.4
    • /
    • pp.503-510
    • /
    • 2015
  • The objective of this study is to analyze the investment adequacy of the projects implemented according to the master plan on sewerage rehabilitation at Seoul. The planned and actually implemented ratio of invested money on sewage treatment plants (STPs) to sewers were compared in two temporal periods. Though the planned ratio of investment on STPs to sewers was 50:50 (in 2009-2020), the actual implemented ratio in 2009-2013 was 34:66. Until 2020, the greater investment ratio on STPs to sewers should be made considering the necessity of coping with stricter legal compliance on advanced treatment, stormwater treatment and so on. The priority of the planned and partially implemented projects among four STPs and at each STP was evaluated. Considering only the performance indicator of reduced load of BOD, T-N, T-P per the capacity of each STP facility, the performance among four STPs was shown as Jung-Rang>Tan-Cheon>Seo-Nam>Nan-Ji. The reverse order of the performance results in the past may be considered for future investment priority, but the efficiency of operation implemented at each STP, deteriorated status of each STP, investment in the past and so forth should also be considered. As for the priority of projects conducted within each STP, projects related to legal compliance (such as advanced tertiary treatment, stormwater treatment, etc.) have highest priority. Odor-related project and inhabitant-friendly facility related projects (such as building park on STPs, etc.) has lower priority than water quality related projects but interactivity with end-users of sewerage should also be important.

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

Estimation of Ultimate Bearing Capacity for Randomly Installed Granular Compaction Pile Group (임의의 배치형태로 설치된 무리형태의 조립토 다짐말뚝에 대한 극한지지력의 평가)

  • 신방웅;채현식;김홍택
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2001
  • Granular compaction piles increase the load bearing capacity of the soft ground and reduce the settlement of fecundation built on the reinforced soil. Also the granular compaction piles accelerate the consolidation of soft ground using the granular materials such as sand, gravel, stone etc. However, this method is one of unuseful methods in Korea. In the present study, the estimation procedure for the ultimate bearing capacity of randomly installed granular compaction pile group is proposed. Also, carbon rod tests have been peformed for verifying the group effect of granular compaction piles and the behavior characteristics such as bulging failure zone on granular compaction piles. From the test results, it is found that bulging failure shape of granular compaction piles was conical shape and the ultimate bearing capacity increased as the spacing of piles became gradually narrow. Also, from the proposed method in this study, the optimal locations of granular compaction piles with various installed cases are analyzed. The results were shown that the bearing capacity was increased in the case concentrated on the central part of pile group.

  • PDF

Clinical Experience of Continuous Epidural Analgesia Using Baxter $Infusor^{(R)}$ (Baxter $Infusor^{(R)}$를 이용한 경막외 진통제 지속 주입)

  • Bae, Sang-Chull;Lee, Jang-Won;Kim, Ill-Ho;Song, Hoo-Bin;Park, Wook;Kim, Sung-Yell
    • The Korean Journal of Pain
    • /
    • v.4 no.2
    • /
    • pp.127-132
    • /
    • 1991
  • Recently a non-electronic, disposable and portable infusor(Baxter infusor with patient control module, Baxter health care Co., Deerfield IL 60015 USA: BI $\bar{c}$ PCM) has been developed that will deliver both a continuous drug infusion as well as allow the patient to deliver extra doses of medication on a demand basis under predetermined limitation of analgesics. Patients may also not require as high analgesic dose rate to control pain when the acceptable and tolerable level of pain relief can be maintained by this device. From April l99l, we have used a total l93 units of BI $\bar{c}$ PCM. These units consisting of two components which one made by a balloon reservoir(capacity 65 ml, flow rate 0.5 ml/hr) to store medication and to regulate the pump power(490 torr), and another two PCMs to regulate additional analgesic administration by patients demand at intervals of 1S minutes and 60 minutes. The dose administered to the patient can be varied by changing the concentration of the infusate within the balloon reservoir. These devices were utilized for the pain control of 44 patients. These patients were divided into two groups. Twenty seven cases had cancer pain and 17 cases had non-cancer pain. The Touhy needle(No. l8 G.) tip was inserted into the epidural space and was used to guide the catheter to the spinal nerve level corresponding to the most painful area. The device was connected to the opposite site of the catheter tip and was filled with 60 ml of mixture solution such as 0.5% bupivacaine 15 ml, morphine HCl 10 mg, trazodone 10 ml, Tridol 3 ml and normal saline 31 ml were administed as the initial dose. When the initial dose was less effective, the next dose could be varied by increasing the concentration of bupivacaine, by adding more morphine (5~10 mg), and by reducing the volume of normal saline. Using these modules of drug self administration, we experienced the following: 1) Improvement of patient's self titration of analgesic requirement was provided. 2) The patients anxiety with pain recurrence resulting from delays in administering pain control medication was decreased significantly. 3) The working load accompanying with the single bolus injection as the usual method was reduced remarkably. 4) There was urinary retention in 5 cases and pruritus in 4 eases which developed as side effects but respiratory depression and vomiting was not encountered in a single case.

  • PDF

Partial Discharge Detection of High Voltage Switchgear Using a Ultra High Frequency Sensor

  • Shin, Jong-Yeol;Lee, Young-Sang;Hong, Jin-Woong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.211-215
    • /
    • 2013
  • Partial discharge diagnosis techniques using ultra high frequencies do not affect load movement, because there is no interruption of power. Consequently, these techniques are popular among the prevention diagnosis methods. For the first time, this measurement technique has been applied to the GIS, and has been tested by applying an extra high voltage switchboard. This particular technique makes it easy to measure in the live state, and is not affected by the noise generated by analyzing the causes of faults ? thereby making risk analysis possible. It is reported that the analysis data and the evaluation of the risk level are improved, especially for poor location, and that the measurement of Ultra high frequency (UHF) partial discharge of the real live wire in industrial switchgear is spectacular. Partial discharge diagnosis techniques by using the Ultra High Frequency sensor have been recently highlighted, and it is verified by applying them to the GIS. This has become one of the new and various power equipment techniques. Diagnosis using a UHF sensor is easy to measure, and waveform analysis is already standardized, due to numerous past case experiments. This technique is currently active in research and development, and commercialization is becoming a reality. Another aspect of this technique is that it can determine the occurrences and types of partial discharge, by the application diagnosis for live wire of ultra high voltage switchgear. Measured data by using the UHF partial discharge techniques for ultra high voltage switchgear was obtained from 200 places in Gumi, Yeosu, Taiwan and China's semiconductor plants, and also the partial discharge signals at 15 other places were found. It was confirmed that the partial discharge signal was destroyed by improving the work of junction bolt tightening check, and the cable head reinforcement insulation at 8 places with a possibility for preventing the interruption of service. Also, it was confirmed that the UHF partial discharge measurement techniques are also a prevention diagnosis method in actual industrial sites. The measured field data and the usage of the research for risk assessment techniques of the live wire status of power equipment make a valuable database for future improvements.

Identification of Motor Parameters and Improvement of Voltage Error for Improvement of Back-emf Estimation in Sensorless Control of Low Speed Operation (저속 센서리스 제어의 역기전력 추정 성능 향상을 위한 모터 파라미터 추정과 전압 오차의 개선)

  • Kim, Kyung-Hoon;Yun, Chul;Cho, Nae-Soo;Jang, Min-Ho;Kwon, Woo-Hyen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.635-643
    • /
    • 2018
  • This paper propose a method to identify the motor parameters and improve input voltage error which affect the low speed position error of the back-emf(back electromotive force) based sensorless algorithm and to secure the operation reliability and stability even in the case where the load fluctuation is severe and the start and low speed operation frequently occurs. In the model-based observer used in this paper, stator resistance, inductance, and input voltage are particularly influential factors on low speed performance. Stator resistance can cause resistance value fluctuation which may occur in mass production process, and fluctuation of resistance value due to heat generated during operation. The inductance is influenced by the fluctuation due to the manufacturing dispersion and at a low speed where the change of the current is severe. In order to find stator resistance and inductance which have different initial values and fluctuate during operation and have a large influence on sensorless performance at low speed, they are commonly measured through 2-point calculation method by 2-step align current injection. The effect of voltage error is minimized by offsetting the voltage error. In addition, when the command voltage is used, it is difficult to estimate the back-emf due to the relatively large distortion voltage due to the dead time and the voltage drop of the power device. In this paper, we propose a simple circuit and method to detect the voltage by measuring the PWM(Pulse Width Modulation) pulse width and compensate the voltage drop of the power device with the table, thereby minimizing the position error due to the exact estimation of the back-emf at low speed. The suitability of the proposed algorithm is verified through experiment.

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

Joint Displacement Resistance Evaluation of Waterproofing Material in Railroad Bridge Deck (철도교량상판 방수재료 선정을 위한 균열거동저항 성능평가)

  • Bae, Young-Min;Oh, Dong-Cheon;Park, Yong-Gul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.683-692
    • /
    • 2020
  • A joint displacement resistance evaluation method for selecting waterproofing materials in railway bridge decks is proposed. The displacement range for an evaluation is determined by finite element method (FEM) analysis of a load case based on an existing high-speed PSC Girder Box railroad bridge structure. The FEM analysis results were used to calculate the minimum joint displacement range to be applied during testing (approximately 1.5 mm). For the evaluation, four commonly used waterproofing membrane types, cementitious slurry coating (CSC), polyurethane coating system (PCS), self-adhesive asphalt sheet (SAS), and composite asphalt sheet (CAS), were tested, with five specimens of each membrane type. The joint displacement width range conditions, including the minimum displacement range obtained from FEM analysis, were set to be the incrementing interval, from 1.5, 3.0, 4.5, and 6.0 mm. The proposal for the evaluation criteria and the specimen test results demonstrated how the evaluation method is important for the sustainability of high-speed railway bridges.

An Experimental Study for Failure Behavior of Composite Beams with DFRCC and FRP Plank with Rib (리브를 갖는 FRP 판과 고인성섬유보강콘크리트로 이루어진 합성보의 파괴거동에 대한 실험적 연구)

  • Kang, Ga-Ram;Yoo, Seung-Woon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2016
  • DFRCC (ductile fiber reinforced cementitious composites), which are a significantly improved ductile material compared to conventional concrete, were evaluated as a new construction material with a high potential applications to concrete structures for a range of purposes. In this study, experiments on the failure behavior of composite beams with a DFRCC and FRP (fiber reinforced polymer) plank with a rib used as permanent formwork and tensile reinforcement were carried out. A normal concrete and a fiber reinforced concrete with PVA series of RF4000 and the PP series of PP-macro were used for comparison, and each RF4000+RSC15 and PP-macro+RSC15 was tested by producing composite beams. The experimental results of the FRP plank without a sand coating showed that sliding failure mode between the FRP plank and concrete started from a flexural crack at the beam center; therefore it is necessary for the FRP plank to be coated with sand and the effect of the fiber to failure mode did not appear to be huge. The experiment of the FRP plank with a sand coating showed that both 1200mm and 2000mm allowed sufficient bonding between the concrete and FRP plank. The maximum load of the fiber reinforced concrete was higher than that of normal concrete and the case which a series of PP fiber was mixed showed the highest value. The crack latency caused by the fibers led to composite action with a FRP rib.

Performance Analysis of Photovoltaic Power Generator by Usage Battery Charge (축전지 사용 유무에 따른 태양광발전기의 성능 분석)

  • Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.220-227
    • /
    • 2013
  • This study examined the electric power quantity derived from solar radiation after installing a photovoltaic power generation system on the rooftop of building adjacent to a greenhouse with a view to reducing the operating expenses of the greenhouse by securing electric energy required to run it. Results of the study can be summed up as follows: The maximum, mean, and minimum solar radiation on the horizontal plane was $26.1MJ{\cdot}m^{-2}$, $14,0MJ{\cdot}m^{-2}$, and $0.6MJ{\cdot}m^{-2}$, respectively and individual the daily electric energy generated was about 6.1 kWh, 3.7 kWh, and 0.01 kWh. The cumulative total amounts of solar radiation and electric energy was about $4,378.2MJ{\cdot}m^{-2}$ and 1,163.2 kWh, respectively. Maximum, mean and minimum cumulative electric energy consumed through each load respectively was 4.5 kWh, 2.4 kWh, and 0.0 kWh and the cumulative electric energy were 739.2 kWh, which accounted for about 63.5% of generated power. In case of the mean amount of power consumption of the system used for this study, the small capacity of heater and the short operating hours meant there was enough power; while big capacity of heater led to a shortage, and if the array surface temperature increased relatively, the energy became proportionate to solar radiation and generated power does not increase. The correlation coefficient between the two factors was 0.851, which indicates a high correlation coefficient.