• Title/Summary/Keyword: Load case

Search Result 3,587, Processing Time 0.03 seconds

Characteristics of Distribution Ratio for Skin Friction in Group Piles (무리말뚝의 주면마찰력 분담비율 특성)

  • Lee, Jun-Dae;Ahn, Byung-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.47-54
    • /
    • 2006
  • H-pile can be more easily driven than pipe pile by pile driver and shows high skin friction and plugging effect. This experimental study was devoted to investigate skin friction of H group piles in granite soil under laboratory test. Pile arrangements $(1{\times}2,\;1{\times}3,\;2{\times}2,\;2{\times}3,\;3{\times}3)$, pile space (2D,4D,6D), and soil density $(D_r=40%,\;80%)$ were tested. The main results obtained from the model tests can be summarized as follows. Distribution ratio of skin friction for total load decreased by $48{\sim}39%$ (dense soil), $32{sim}27%$ (loose soil) as piles space ratio increases in case of $3{\times}3$ group piles. And the distribution ratio of skin friction by pile settlements under loose soil decreased by about $58{\sim}33.2%$ in $2{\times}2$ group piles and about $65{\sim}38%$ in $3{\times}3$ group piles respectively.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Improvement of the amplification gain for a propulsion drives of an electric vehicle with sensor voltage and mechanical speed control

  • Negadi, Karim;Boudiaf, Mohamed;Araria, Rabah;Hadji, Lazreg
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.661-675
    • /
    • 2022
  • In this paper, an electric vehicle drives with efficient control and low cost hardware using four quadrant DC converter with Permanent Magnet Direct Current (PMDC) motor fed by DC boost converter is presented. The main idea of this work is to improve the energy efficiency of the conversion chain of an electric vehicle by inserting a boost converter between the battery and the four quadrant-DC motor chopper assembly. Consequently, this method makes it possible to maintain the amplification gain of the 4 quadrant chopper constant regardless of the battery voltage drop and even in the presence of a fault in the battery. One of the most important control problems is control under heavy uncertainty conditions. The higher order sliding mode control technique is introduced for the adjustment of DC bus voltage and mechanical motor speed. To implement the proposed approach in the automotive field, experimental tests were carried out. The performances obtained show the usefulness of this system for a better energy management of an electric vehicle and an ideal control under different operating conditions and constraints, mostly at nominal operation, in the presence of a load torque, when reversing the direction of rotation of the motor speed and even in case of battery chamber failure. The whole system has been tested experimentally and its performance has been analyzed.

IoT-based monitoring and crash alarm systems for Access Service Basket (Access Service Basket을 위한 IoT 기반 모니터링 및 충돌 경보 시스템)

  • Yoo, Ju-Yeon;Woo, Yun-Tae;Sin, Il-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.589-591
    • /
    • 2021
  • In the offshore plant industry, the Access service basket for aerial work is used of for various business purposes. However, various types of safety accidents continue to occur in operating these system. In the case of high-capacity workstations currently in use, workers are exposed to various risks in determining and operating the load capacity, proximity distance, and direction of operation. In this paper, to solve this problem, we develop a device that incorporates IoT-based monitoring and crash alarm systems into aerial work systems. The developed device was tested in the presence of experts to ensure reliability of the device, which allows workers and managers to easily check the operation status and thereby prevent safety accidents in advance.

  • PDF

Development of gripping force and durability test standard for myoelectric prosthetic hand (근전전동의수의 파지력 및 내구성 시험 표준 개발)

  • Gook Chan Cha;Suk-Min Lee;Ki-Won Choi;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.393-399
    • /
    • 2023
  • Upper limb amputees wear an upper limb prosthesis for both aesthetic purposes and functional necessity, and in particular, in the case of amputee with both hands, it is essential to wear a myoelectric prosthetic hand capable of gripping action. The prosthetic hand operated by the EMG signal of the remaining muscles is a public insurance benefit item of the Industrial Accident Compensation Insurance, and test method standards are needed to be developed for the safety of the user and the effectiveness of the product performance. In this study, we developed systems for measuring the gripping force of myoelectric hand prosthesis by a load cell and for durability test of the prosthesis over repeated use with a proximity sensor, and propose a test method standard. Since the international test method standard has not yet been established, it is expected that Korea will be able to play a leading role in this standardization field in the future.

A feasibility study on the estimation of a potential relaxed zone in the discontinuum coupled analysis of a subsea tunnel (해저터널의 불연속체 연계해석 시 잠재적 이완영역 평가 방법의 타당성 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.141-150
    • /
    • 2009
  • When constructing a subsea tunnel in discontinuous rock mass, fluid flow in joints has a great influence on the behavior of the tunnel so that hydro-mechanical coupled analysis should be performed for the stability estimation. In practice, relaxed rock load is generally used for the design of tunnel concrete lining. In a continuum analysis, a method based on the distribution of local safety factor around a tunnel was proposed for the estimation of a potential relaxed zone. However, in the case of discontinuous rock mass in which joints are developed, the whole stability of tunnels depends on the behavior of the joints. In this study, therefore, a method is proposed for the estimation of a potential relaxed zone occurred by the excavation of a tunnel in discontinuous rock mass. The suggested method is validated by sensitivity analysis and the comparison with the results of continuum analysis.

Influence of Composition of Layer Layout on Bending and Compression Strength Performance of Larix Cross-Laminated Timber (CLT)

  • Da-Bin SONG;Keon-Ho KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.239-252
    • /
    • 2023
  • In this study, bending and compression strength tests were performed to investigate effect of composition of layer layout of Larix cross-laminated timber (CLT) on mechanical properties. The Larix CLT consists of five laminae, and specimens were classified into four types according to grade and composition of layer. The layer's layout were composited as follows 1) cross-laminating layers in major and minor direction (Type A), and 2) cross-laminating external layer in major direction and internal layer applied grade of layer in minor direction (Type B). E12 and E16 were used as grades of lamina for major direction layer of Type A and external layer of Type B according to KS F 3020. In results of the bending test of CLT using same grade layer according to layer composition, the modulus of elasticity (MOE) of Type B was higher than Type A. In case of prediction of bending MOE of Larix CLT, the experimental MOE was higher than 1.00 to 1.09 times for Shear analogy method and 1.14 to 1.25 times for Gamma method. Therefore, it is recommended to predict the bending MOE for Larix CLT by shear analogy method. Compression strength of CLT in accordance with layer composition was measured to be 2% and 9% higher for Type A using E12 and E16 layers than Type B, respectively. In failure mode of Type A, progress direction of failure generated under compression load was confirmed to transfer from major layer to minor layer by rolling shear or bonding line failure due to the middle lamina in major direction.

A Study on the Relationship between Response Spectrum and Seismic Fragility Using Single Degree of Freedom System (단자유도 해석모델을 활용한 응답스펙트럼과 지진취약도 곡선과의 관계에 대한 연구)

  • Park, Sangki;Cho, Jeong-rae;Cho, Chang-beck;Lee, JinHyuk;Kim, Dong-Chan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.245-252
    • /
    • 2023
  • In general, the design response spectrum in seismic design codes is based on the mean-plus-one-standard deviation response spectrum to secure high safety. In this study, response spectrum analysis was performed using seismic wave records adopted in domestic horizontal design spectrum development studies, while three response spectra were calculated by combining the mean and standard deviation of the spectra. Seismic wave spectral matching generated seismic wave sets matching each response spectrum. Then, seismic fragility was performed by setting three damage levels using a single-degree-of-freedom system. A correlation analysis was performed using a comparative analysis of the change in the response spectrum and the seismic fragility concerning the three response spectra. Finally, in the case of the response spectrum considering the mean and standard deviation, like the design response spectrum, the earthquake load was relatively high, indicating that conservative design or high safety can be secured.

Influence of size-anatomy of the maxillary central incisor on the biomechanical performance of post-and-core restoration with different ferrule heights

  • Domingo Santos Pantaleon;Joao Paulo Mendes Tribst;Franklin Garcia-Godoy
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.2
    • /
    • pp.77-90
    • /
    • 2024
  • PURPOSE. The study aims to investigate the influence of the ferrule effect and types of posts on the stress distribution in three morphological types of the maxillary central incisor. MATERIALS AND METHODS. Nine models were created for 3 maxillary central incisor morphology types: "Fat" type - crown 12.5 mm, root 13 mm, and buccolingual cervical diameter 7.5 mm, "Medium" type - crown 11 mm, root 14 mm, and buccolingual cervical diameter 6.5 mm, and "Slim" type - crown 9.5 mm, root 15 mm, and buccolingual cervical diameter 5.5 mm. Each model received an anatomical castable post-and-core or glass-fiber post with resin composite core and three ferrule heights (nonexistent, 1 mm, and 2 mm). Then, a load of 14 N was applied at the cingulum with a 45° slope to the long axis of the tooth. The Maximum Principal Stress and the Minimum Principal Stress were calculated in the root dentin, crown, and core. RESULTS. Higher tensile and compression stress values were observed in root dentin using the metallic post compared to the fiber post, being higher in the slim type maxillary central incisor than in the medium and fat types. Concerning the three anatomical types of maxillary central incisors, the slim type without ferrule height in mm presented the highest tensile stress in the dentin, for both types of metal and fiber posts. CONCLUSION. Post system and tooth morphology were able to modify the biomechanical response of restored endodontically-treated incisors, showing the importance of personalized dental treatment for each case.

Reasonably completed state assessment of the self-anchored hybrid cable-stayed suspension bridge: An analytical algorithm

  • Kai Wang;Wen-ming Zhang;Jie Chen;Zhe-hong Zhang
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.159-175
    • /
    • 2024
  • In order to solve the problem of calculating the reasonable completed bridge state of a self-anchored hybrid cable-stayed suspension bridge (SA-HCSB), this paper proposes an analytical method. This method simplifies the main beam into a continuous beam with multi-point rigid supports and solves the support reaction forces. According to the segmented catenary theory, it simultaneously solves the horizontal forces of the main span main cables and the stay cables and iteratively calculates the equilibrium force system on the main beam in the collaborative system bridge state while completing the shape finding of the main span main cable and stay cables. Then, the horizontal forces of the side span main cables and stay cables are obtained based on the balance of horizontal forces on the bridge towers, and the shape finding of the side spans are completed according to the segmented catenary theory. Next, the difference between the support reaction forces of the continuous beam with multiple rigid supports obtained from the initial and final iterations is used to calculate the load of ballast on the side span main beam. Finally, the axial forces and strains of each segment of the main beam and bridge tower are obtained based on the loads applied by the main cable and stay cables on the main beam and bridge tower, thereby obtaining analytical data for the bridge in the reasonable completed state. In this paper, the rationality and effectiveness of this analytical method are verified through a case study of a SA-HCSB with a main span of 720m in finite element analysis. At the same time, it is also verified that the equilibrium force of the main beam under the reasonably completed bridge state can be obtained through iterative calculation. The analytical algorithm in this paper has clear physical significance, strong applicability, and high accuracy of calculation results, enriching the shape-finding method of this bridge type.