• Title/Summary/Keyword: Load case

Search Result 3,587, Processing Time 0.033 seconds

Development of accelerated life test method for the wind turbine Gearbox using cumulative damage theory (누적손상이론을 이용한 풍력증속기의 가속수명시험법 개발)

  • Son, Ki-Su;Kwak, Hee-Sung;Kang, Change-Hoon;Cho, Jun-Haeng
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.693-697
    • /
    • 2005
  • This study was performed to develop accelerated life test method of the wind-turbine gearbox using accumulated damage theory that used to model the fatigue of parts that receive variable load. The accumulated damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of the gearbox was described. Life distribution of the wind-turbine gearbox was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 140,600 hours and 99% reliability for one test sample According to the accumulated damage theory, because test time can shorten in case increase test load, test time could be reduced by 1.2 years when we put the load 1.2 times of rated load than 0.93 times of rated load that is equivalent load calculated by load spectrum of the wind turbine. This time, acceleration coefficient was 21.3. This accelerated test method was used to develop accelerated test method of gear reducer, gear and bearing as well as the industrial gearbox and it is considered to be applied comprehensively to mechanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

The algorithm of the load flow problem for integrated distributed generation network (분산전원의 특성을 고려한 조류계산의 새로운 알고리즘 고찰)

  • Nguyen, Dinh Hung;Nguyen, Minh Y.;Nguyen, Van Thang;Kim, Tae-Won;Kim, Kern-Joong;Yoon, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.168-169
    • /
    • 2011
  • The aim of this paper is to present a new algorithm for the load flow problem using modified Newton-Raphson (NR) iteration method and a approach to derive a simple formula to compensate the reactive power at some heavy load bus. The reactive power source used in this research is the DG which is adjacent to the heavy load. Phenomena of low voltages may cause the load flow calculation process to diverge. In modified NR method, low voltages will be detected and corrected before the next iteration. Therefore, the results of load flow calculation process satisfy the voltage constraint i.e. higher than the lower voltage limit or higher than the critical voltage in case the conventional load flow diverges. Linearizing the power network using PTDFs is a simple method with accepted errors. A new value of voltage at the DG terminal is computed in terms of the voltage deviation of load buses. In this approach, solving the entire system is unnecessary.

  • PDF

Measurement-based Static Load Modeling Using the PMU data Installed on the University Load

  • Han, Sang-Wook;Kim, Ji-Hun;Lee, Byong-Jun;Song, Hwa-Chang;Kim, Hong-Rae;Shin, Jeong-Hoon;Kim, Tae-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.653-658
    • /
    • 2012
  • Load modeling has a significant influence on power system analysis and control. In recent years, measurement-based load modeling has been widely practiced. In the load modeling algorithm, the model structure is determined and the parameters of the established model are estimated. For parameter estimation, least-squares optimization method is applied. The model parameters are estimated so that the error between the measured values and the predicted values is to be minimized. By introducing sliding window concept, on-line load modeling method can be performed which reflects the dynamic behaviors of loads in real-time. For the purpose of data acquisition, the measurement system including PMU is implemented in university level. In this paper, case studies are performed using real PMU data from Korea Univ. and Seoul National University of Science and Technology. The performances of modeling real and reactive power behaviors using exponential and ZIP load model are evaluated.

Comparative Study on the Application of Direct Analysis Method to Large Container Carriers (대형 컨테이너선의 직접해석법에 관한 비교 연구)

  • Ryu Hong-Ryeul;Lee Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.484-493
    • /
    • 2006
  • Recently, direct load analysis using ship motion program is required to confirm structural safety for the Post-Panamax class large container carrier. However, there is no exact comparative study data for structural response between 20 and 30 wave load. So, in this paper, to compare the hull girder stress response between 20 versus 3D wave load calculation method, direct load analysis and global F.E analysis have been performed for three kinds of large container vessels using each 20 and 30 wave load calculation program. The results of 2D wave load RAO(Response Amplitude Operator) of each dominant load parameter(vertical, torsional and horizontal moment) are generally bigger than that of 30 results, especially in vertical wave bending moment. And the results of structural analysis based on the equivalent design wave method shows that there is a big difference in view of stress, but the stress distribution is very similar for each wave load case.

Assessment of load carrying capacity and fatigue life expectancy of a monumental Masonry Arch Bridge by field load testing: a case study of veresk

  • Ataei, Shervan;Tajalli, Mosab;Miri, Amin
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.703-718
    • /
    • 2016
  • Masonry arch bridges present a large segment of Iranian railway bridge stock. The ever increasing trend in traffic requires constant health monitoring of such structures to determine their load carrying capacity and life expectancy. In this respect, the performance of one of the oldest masonry arch bridges of Iranian railway network is assessed through field tests. Having a total of 11 sensors mounted on the bridge, dynamic tests are carried out on the bridge to study the response of bridge to test train, which is consist of two 6-axle locomotives and two 4-axle freight wagons. Finite element model of the bridge is developed and calibrated by comparing experimental and analytical mid-span deflection, and verified by comparing experimental and analytical natural frequencies. Analytical model is then used to assess the possibility of increasing the allowable axle load of the bridge to 25 tons. Fatigue life expectancy of the bridge is also assessed in permissible limit state. Results of F.E. model suggest an adequacy factor of 3.57 for an axle load of 25 tons. Remaining fatigue life of Veresk is also calculated and shown that a 0.2% decrease will be experienced, if the axle load is increased from 20 tons to 25 tons.

A STUDY ON THE REACTIVE POWER COMPENSATION OF THREE PHASE UNBALANCED LOAD FOR VAR SYSTEM (VAR 시스템에 의한 3 상 불평형 부하의 무효전력 보상에 관한 연구)

  • Jung, Yon-Taek;Seo, Young-Soo;Kim, Young-Bong;Kim, Han-Soo;Lee, Bong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.531-534
    • /
    • 1989
  • In this paper, the way that input voltage and input line current as a control variable is provided as one unit is projected. Till no, have denied with three phase balanced load. But, in that case, total power factor compensation is difficult, for to control each phase at unbalanced load. Therefor, in this paper suggest of the scheme that three phase unbalanced load is controlled by each phase and input total power factor is compensated unit input factor. therefore, in this paper suggest that three phase unbalanced load is controlled and the method in compensation of unit input factor to be attended by unbalanced load. Besides, the object of control is calculating quantity for input voltage and input line current for the point at issuse make to improve of control method at unbalanced load. As a result, control system of each phase could maintain as a unit input total power factor has been state diviation error of 2% with unbalanced load.

  • PDF

Development of Accelerated Life Test Method for Machanical Parts Using Cumulative Damage Theory (누적손상이론을 이용한 기계류부품의 가속수명시험법 개발)

  • Kim, Dae-Cheol;Lee, Geun-Ho;Kim, Hyeong-Ui
    • 연구논문집
    • /
    • s.32
    • /
    • pp.35-43
    • /
    • 2002
  • This study was performed to develop accelerated life test method of machanical parts using cumulative damage theory that used to model the fatigue of parts that receive variable load. The cumulative damage theory was introduced, and the estimation of life and calculation of accelerated life test time was illustrated. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% reliability for one test sample. According to the cumulative damage theory, because test time can shorten in case increase test load, test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7. This accelerated test method was used to develop accelerated test method of gear reducer, hydraulic hose and bearing as well as agricultural tractor transmission and it is considered to be applied comprehensively to machanical parts the fatigue of which is happened by load or pressure etc.

  • PDF

The Effect of Low-amplitude Cycles in Flight-simulation Loading (비행하중에서 피로균열진전에 미치는 미소하중의 영향)

  • Shim, Dong-Suk;Kim, Jung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1045-1050
    • /
    • 2003
  • In this study, to investigate the effects of omitting low-amplitude cycles from a flight-simulation loading, crack growth tests are conducted on 2124-T851 aluminum alloy specimens. Three test spectra are generated by omitting small load ranges as counted by the rain-flow count method. The crack growth test results are compared with the data obtained from the flight-simulation loading. The experimental results show that omission of the load ranges below 5% of the maximum load does not significantly affect crack growth behavior, because these are below the initial stress intensity factor range. However, in the case of omitting the load ranges below 15% of the maximum load, crack growth rates decrease, and therefore crack growth curve deviates from the crack growth data under the flight-simulation loading. To optimize the load range that can be omitted, crack growth curves are simulated by the stochastic crack growth model. The prediction shows that the omission level can be extended to 8% of the maximum load and test time can be reduced by 59%.

  • PDF

Development of the ELDC and Reliability Analysis of Composite Power System by Monte Carlo Method (Monte Carlo법에 의한 복합전력계통의 유효부하지속곡선 작성법 및 개발 및 신뢰도 해석)

  • Moon, Seung-Pil;Choi, Jae-Seok;Shin, Heung-Kyo;Lee, Sun-Young;Song, Kil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.508-516
    • /
    • 1999
  • This paper presents a method for constructing composite power system effective load duration curves(CMELDC) at load points by Monte Carlo method. The concept of effective load duration curves(ELDC) in power system planning is useful and important in both HLII. CMELDC can be obtained from convolution integral processing of the probability function of unsupplied power and the load duration curve at each load point. This concept is analogy to the ELEC in HLI. And, the reliability indices (LOLP, EDNS) for composite power system are evaluated using CMELDC. Differences in reliability levels between HLI and HLII come from considering with the uncertainty associated with the outages of the transmission system. It is expected that the CMELDC can be applied usefully to areas such as reliability evaluation, probabilistic production cost simulation and analytical outage cost assessment, etc. in HLII, DC load flow and Monte Carlo method are used for this study. The characteristics and effectiveness of thes methodology are illustrated by a case study of the IEEE RTS.

  • PDF

Part-load Performance Characteristics of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System Operating with Various Load-following Operation Modes (부하추종 운전방법에 따른 고체산화물 연료전지/가스터빈 하이브리드 동력 시스템의 부분부하 성능특성)

  • Kim Jae-Hoon;Yang Jin-Sik;Ro Sung-Tack;Sohn Jeong-Lak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.193-200
    • /
    • 2006
  • The purpose of this study is to compare the part-load performance of a SOFC/GT hybrid power system with three different kinds of load-following operation modes. The primary mode for the part load operation of a hybrid power system is the reduction of supplied fuel (e.g., fuel control mode) to the hybrid system. The other two options, i.e., variable speed and VIGV controls, are related to the reduction of supplied air simultaneously with the reduction of supplied fuel to the system. With the performance analysis of a SOFC/GT hybrid power system, it is concluded that the variable speed con佐ol mode Provides the best performance for the part-load operations. It is also found that the VIGV control mode, with its better performance behavior than the fuel control mode, can be used as an important option for the part-load operation especially in case that the variable speed control mode can not be adopted.