• Title/Summary/Keyword: Load Transfer Switching

Search Result 56, Processing Time 0.029 seconds

An Expert System for the Restoration of Distribution Networks (배전망 복구지원 전문가 시스템에 관한 연구)

  • 이흥재;이경섭;박성민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.3
    • /
    • pp.87-94
    • /
    • 2003
  • When faults occur in a distribution network, blackout loads must be restored as fast as possible to minimize interruption of electric service. This paper presents an expert system to restore distribution networks. The system is designed to minimize switching operations in a heuristic sense by using heuristic rules. The restoration process is converted to the feasible path finding problem in the state space of expert system by application of general topological knowledge base. Multiple load transfer algorithm is proposed to deal with complex situations.

Practical Bifurcation Criteria considering Inductive Power Pad Losses in Wireless Power Transfer Systems

  • Kim, Minkook;Lee, Jae-Woo;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.173-181
    • /
    • 2017
  • In this paper, the bifurcation criteria for inductive power transfer (IPT) systems is suggested considering the inductive power pad losses. The bifurcation criteria for series-series (SS) and series-parallel (SP) topologies are derived in terms of the main parameters of the IPT system. For deriving precise criteria, power pad resistance is obtained by copper loss calculation and core loss analysis. Utilizing the suggested criteria, possibility of bifurcation occurrence can be predicted in the design process. In order to verify the proposed criteria, 50 W IPT laboratory prototype is fabricated and the feasibilities of the switching frequency and AC load resistance shift to escape from bifurcation are identified.

A Study on Operation Scheme of STS with Emergency Generator for Peak Shedding (첨두부하 저감을 위한 비상발전기 연계형 STS 운영 방안에 관한 연구)

  • Kim, Chang-Hwan;Rhee, Sang-Bong;Kim, Kyu-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.155-156
    • /
    • 2015
  • Recently, electricity consumption has rapidly increased along with economic growth. The operating strategy using emergency generator is aimed, to resolve a demand response management. For strategy of peak shedding using emergency generator, it is essential to introduce the fast transfer switching device. One of the most effective solutions is to use a static transfer switch (STS) based on thyristor. However, the characteristic of natural commutated SCR thyristor should anticipate short duration voltage sag. STS system thus requires more than a quarter cycle to successfully complete transfer process. This paper proposes the operation scheme of the STS system using the forced-commutation technique to mitigate instantaneous voltage sag during peak transfer process. Proposed STS system improved turn-off characteristic thus accomplishes the peak load shedding satisfied power quality. Performance of the proposed STS system is evaluated using electromagnetic transient program (EMTP) to confirm the effectiveness.

  • PDF

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

Prediction of Electric Power on Distribution Line Using Machine Learning and Actual Data Considering Distribution Plan (배전계획을 고려한 실데이터 및 기계학습 기반의 배전선로 부하예측 기법에 대한 연구)

  • Kim, Junhyuk;Lee, Byung-Sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.171-177
    • /
    • 2021
  • In terms of distribution planning, accurate electric load prediction is one of the most important factors. The future load prediction has manually been performed by calculating the maximum electric load considering loads transfer/switching and multiplying it with the load increase rate. In here, the risk of human error is inherent and thus an automated maximum electric load forecasting system is required. Although there are many existing methods and techniques to predict future electric loads, such as regression analysis, many of them have limitations in reflecting the nonlinear characteristics of the electric load and the complexity due to Photovoltaics (PVs), Electric Vehicles (EVs), and etc. This study, therefore, proposes a method of predicting future electric loads on distribution lines by using Machine Learning (ML) method that can reflect the characteristics of these nonlinearities. In addition, predictive models were developed based on actual data collected at KEPCO's existing distribution lines and the adequacy of developed models was verified as well. Also, as the distribution planning has a direct bearing on the investment, and amount of investment has a direct bearing on the maximum electric load, various baseline such as maximum, lowest, median value that can assesses the adequacy and accuracy of proposed ML based electric load prediction methods were suggested.

The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching (국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구)

  • Baek, Sehyun;Kim, Hyunhee;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.

A Re-Configuration Genetic Algorithm for Distribution Systems (배전계통에서 유전적 알고리즘을 이용한 접속변경순서결정방법)

  • Choi, Dai-Seub
    • Proceedings of the KIEE Conference
    • /
    • 2005.05b
    • /
    • pp.62-63
    • /
    • 2005
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult to solve, Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration, and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

A Re-Configuration Genetic Algorithm for Distribution Systems (배전계통에서 유전적 알고리즘을 이용한 접속변경순서 결정방법)

  • Choi, Dai-Seub
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.381-383
    • /
    • 2004
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult to solve. Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration, and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

A Re-Configuration Genetic Algorithm for Distribution Systems (배전계통에서 유전적 알고리즘을 이용한 접속변경순서결정방법)

  • Choi, Dai-Seub
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.418-420
    • /
    • 2005
  • Recently, sectionalizing switches have been coming to be operated by remote control through the distribution SCADA system. However, the problem of determining the optimal switching sequence is a combinatorial optimization problem, and is quite difficult In solve. Hence, it is imperative to develop practically applicable solution algorithms create a new arbitral distribution system configuration from an initial configuration and some of these algorithms do not show a load transfer sequence to reach the objective system.

  • PDF

Design of a Variable-Stiffness Type Safety Joint for Service Robots (서비스 로봇용 가변강성 형 안전관절의 설계)

  • Jeong, Jae-Jin;Chang, Seung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.128-134
    • /
    • 2009
  • This paper aims to design a variable-stiffness type economical safety joint for service robots. The safety joint was designed to have a passive shock absorbing mechanism for protecting human from a catastrophic collision under service condition of robots. A simple mechanism composed of two action disks for switching the load transfer, a spring and a screw for pre-load was proposed. In order to evaluate the performance of the safety joint a testing platform which can carry out the static and impact tests was also designed and fabricated. From the test results, the designed safety joint was proved to have a variable load-carrying capacity and about 42% impact absorption capacity with simple manipulation of the control screw.