• Title/Summary/Keyword: Load Ratio Method

Search Result 1,222, Processing Time 0.023 seconds

Free Vibration Analysis of Thick Plate Subjected to In-plane Force on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 면내력을 받는 후판의 진동해석)

  • Lee, Yong Soo;Kim, Il Jung;Oh, Soog Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, as the size of buildings structure becomes large increases, their mat area of building structure is supported or by an inhomogeneous foundation. This paper presents a vibration analysis on thick plates subjected to in-plane force is presented in this paper. The rectangular plate is isotropic, homogeneous, and composed of a linearly elastic material. A vibration analysis of the rectangular thick plate iwas done by useing ofarectangular finite element with 8 nodes and 9 nodes. In this study, the foundation was idealized as a Pasternak foundation model. A Pasternak foundation haves a shear layer on Winkler's model, which idealizes the foundation as a vertical spring. In order tTo analysze the vibration of a plate supported on by an inhomogeneous Pasternak foundation, the value of the Winkler foundation parameter of the central and border zones of the plate awere chosen as WFP1 and WFP2. (fFigure 4.). The Winkler foundation parameter of WFP1 and WFP2 is varied from 0 to 10, $10^2$, and $10^3$ and the shear foundation parameters is were 0, 5, and 10. The ratio of the in-plane force to the critical load iwas applied as 0.4 to 0.8

A study on the characteristics of planar type inductively coupled plasma and its applications on the selective oxide etching (평면형 유도결합 플라즈마의 특성 및 선택적 산화막 식각 응용에 관한 연구)

  • 양일동;이호준;황기웅
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.91-96
    • /
    • 1997
  • The electrical characteristics and the plasma parameters of planar inductively coupled plasmas (ICP) have been measured. The resistance of the total load including the coil and the plasma varied from 1 to 4 W and the inductance from 1.5 m to 2 mH when the power was changed from 100 to 1000 W and the pressure from 1 to 10 mTorr. The density of electron measured by Langmuir probe was over $10^{11}/\textrm{cm}^3$ and the temperature varied between 3 and 5 eV as the process conditions were changed. Bias modulation was adopted as a new method to improve the selectivity of $SiO_2$on Si in $C_4F_8$ (octafluorocyclobutane) plasma. The selectivity was improved as the duty ratio decreased, but the etch rate of $SiO_2$decreased below 400$\AA$/min. $H_2$addition to $C_4F_8$ plasma showed that the etch selectivity could be higher than 50 and the etch rate of $SiO_2$over 2000$\AA$/min when 60% $H_2$was added.

  • PDF

An Analysis on the Constructional Factor of Slacks by Lower-Limb Movement (하지동작(下肢動作)에 따른 Slacks 구성요인(構成要因) 분석(分析))

  • Park, Young Deuk;Suh, Young Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.4
    • /
    • pp.648-662
    • /
    • 1993
  • The summarized findings resulted from experiments and investigation are suggested as follows ; The analysis of measurements on the lower limb movements : For this experimentation, data was collected from three hundred and eighty female, age 19 to 23, who answered five lower limb movements(M1~M5). The statistics show that the order of the expansion ratio is gluteal area-length/knee-girth/back-line/knee-depth/thigh-depth/hip-girth, from the highest to the lowest in all movements. When comparing the correlation coefficient of the measurements, the values of the correlation coefficient of the height and the length items are very low, but those of the girth, the breadth, and the depth items are relatively high and those of the waist and the hip items are highest. For more sophisticated analysis, the factor analysis was conducted on the lower limb movements. Four factors were classified on the factor load by the "varimax rotation" method. Each movement shows the most important factor differently, as follows ; the most important factor in M1 is "the shape factor of lower limb below hip-line", that in M2 is "the cross-sectional shape factor", that in M3 is "the size factor of abdominal and loins region", and those in M4 and M5 accord with the interpretation of M3. When the investigation of the estimated function was conducted, in the selectional case of representative items on the slacks construction, it found that it would be better to add abdomen and thigh items as important considerations to waist girth, hip girth and crotch length.

  • PDF

Analysis of Tunnel Lining Behavior under Tunnel Load (이완하중을 받는 터널라이닝의 거동분석)

  • Park, Jung-Jin;Kim, Do-Hyun;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.79-88
    • /
    • 2012
  • In this study, the tunnel loads acting on the concrete lining are analyzed by comparing three methods - Terzaghi table, Terzaghi formula and Ground-Lining Interaction (G.L.I) model. The tunnel loads are analyzed by FLAC 2D. And the G.L.I model is analyzed under various rock mass ratings, tunnel depths (20~80m) and in-situ stress ratios ($K_0$=0.5~2.0). Terzaghi's method can be applied only to weathered rocks and soils, and cannot reflect the effect of various tunnel depths and in-situ stress ratio. The proposed G.L.I model can not only be applied to various ground conditions, but also relieves the tunnel loads by up to 30%.

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi;Firouzeh, Saeed;Pahlavanzadeh, Mahsa;Heidari, Yaser;Irani-Rahaghi, Mohsen
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.75-94
    • /
    • 2020
  • The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Bending Fatigue Life Assessment of Aged CWR using the Field Test (현장측정을 통한 노후레일의 휨 피로수명 평가)

  • Park, Yong-Gul;Sung, Deok-Yong;Park, Hong-Kee;Kong, Sun-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.317-325
    • /
    • 2008
  • As a result of recent research, it is reported that the periodic replacements criterion of rails is able to extend as grinding rail surface and using the continuous welded rail (CWR). This study evaluated correlation between conditions of track and load capacity of rail by analysing the dynamic response of track while the metro train is running. Also, it was converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then accumulated fatigue damage ratio and remaining service life of laid rail were calculated so as the apply the equivalence of stress to S-N curve of a new welded rail. Finally, this study suggests a revision of the periodic replacements criterion of CWR, which was based on accumulated passing tonnage, classified by the types and conditions of track system.

Dynamic Response Analysis of 2.5MW Wind Turbine Gearbox with Flexible Pins (유연핀을 적용한 2.5MW급 풍력발전기용 기어박스의 동응답 해석)

  • Cho, Jin-Rae;Jeong, Ki-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • This study is concerned with the numerical investigation of dynamic characteristics of 2.5MW-class wind turbine gearbox in which the misalignment improvement of plenary gear shafts by the flexible pins and the dynamic impact response are analyzed by the finite element method. The tooth contact between gears is modelled using the line element having the equivalent tooth stiffness and the contact ratio to accurately and effectively reflect the load transmission in the internal complex gear system. The equivalent tooth stiffness is calculated by utilizing the tooth deformation analysis and the impulse torque is applied to the input shaft for the dynamics response characteristic analysis. Through the numerical experiments, the equivalent tooth stiffness model was validated and the misalignment improvement of planetary gear shafts was confirmed from the comparison with the cases of fixed shafts at one and both ends.

The structural performance of arches made of few vossoirs with dry-joints

  • Bernat-Maso, Ernest;Gil, Lluis;Marce-Nogue, Jordi
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.775-799
    • /
    • 2012
  • This work approaches the structural performance of masonry arches that have a small ratio between number of vossoirs and span length. The aim of this research is to compare and validate three different methods of analysis (funicular limit analysis F.L.A., kinematic limit analysis K.L.A. and plane stress Finite Element Analysis F.E.A.) with an experimental campaign. 18 failure tests with arches of different shapes and boundary conditions have been performed. The basic failure mechanism was the formation of enough hinges in the geometry. Nevertheless, in few cases, sliding between vossoirs also played a relevant influence. Moreover, few arches didn't reach the collapse. The FLA and KLA didn't find a solution close to the experimental values for some of the tests. The low number of vossoirs and joints become a drawback for an agreement between kinematic mechanism, equilibrium of forces and geometry constraints. FLA finds a lower bound whereas KLA finds an upper bound of the ultimate load of the arch. FEA is the most reliable and robust method and it can reproduce most of the mechanism and ultimate loads. However, special care is required in the definition of boundary conditions for FEA analysis. Scientific justification of the more suitability of numerical methods in front of classic methods at calculating arches with a few vossoirs is the main original contribution of the paper.

平面應力 破壞靭性値 擧動에 관한 硏究

  • 송삼홍;고성위;정규동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.376-385
    • /
    • 1987
  • In this study, the plane stress fracture toughness and Tearing modulus are investigated for various crack ratios using the J integral. To evaluate the J integral and Tearing modulus, both experiments and estimation are used. The thickness of the low carbon steel specimens that is used in the experiments is 3mm. The type of specimen that is considered in the study is center-cracked-tension one. The measurements of crack length are performed by unloading compliance method. In the estimation of crack parameters such as the J integral and load line displacement, the Ramberg and Osgood stress strain law is assumed. Then simple formulas are given for estimating the crack parameters from contained yielding to fully plastic solutions. Obtained results are as follows; (1) When the crack ratio is in the range of 0.500 - 0.701, the plane stress fracture toughness is almost constant regardless of crack ratios. (2) The fracture toughness (J$\_$c/) and Tearing modulus (T) obtained are J$\_$c/=28.51kgf/mm, T=677.7 for base metal, J$\_$c/=31.85kgf/mm, T=742.0 for annealed metal. (3) Simpson's and McCabe's formulas which consider crack growth in estimating J integral are shown more conservative J and lower T than Rice's and Sumpter's. (4) Comparison of the prediction with the actual experimental measurements by Simpson's formula shows good agreement.

A Sensitivity Analysis for the Geotechnical Parameters Estimation of a Ground around a Granular Compaction Pile (쇄석다짐말뚝 주변지반의 지반정수산정을 위한 민감도 분석)

  • Han, Yushik;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.12
    • /
    • pp.5-15
    • /
    • 2015
  • The GCP (Granular Compaction Pile) for the improvement objective of soft ground has been frequently studied. However, these studies were the results deduced on the basis of the numerical analysis and the laboratory model tests, and there was no study method to apply the effects of the bulging failure of a flexible pile. In this study, the sensitivity of the load-settlement curves of the uniform and the tapered GCP dependant on the geotechnical parameters estimated from N value of standard penetration test (SPT) was analyzed. It was estimated reasonably that, in the very soft clay soil (N=3 or less), elastic modulus was 700~2000 kPa and Poisson's ratio was 0.40~0.48.