• Title/Summary/Keyword: Load Power Factor

Search Result 844, Processing Time 0.033 seconds

Electrical Characteristics of the Hexagon-type Piezoelectric Transformer (육각형 압전변압기의 전기적 출력 특성)

  • Lee, Jong-Pil;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.296-299
    • /
    • 2002
  • In this paper, a hexagon-type piezoelectric transformer was investigated to increase the output power. The length of its side was 14mm and 17.5mm, respectively. The piezoelectric ceramics was composed to PZT-PMN-PSN. This composition showed the characteristics which had an about 1500 of the mechanical Q-factor, 0.55 of the electromechanical coupling coefficient, $320{\times}10^{-12}C/N$ of the piezoelectric constant $d_{31}$, 0.3 % of the dissipation factor, etc. The voltage step-up ratio increased with increasing the load resistance, $R_{L}$, so it reached 80 with $R_{L}$ of $1M{\Omega}$ and was proportion to the length of side of the hexagon-type piezoelectric transformer. Also, the output power increased with increasing the size of the hexagon-type piezoelectric transformer.

  • PDF

Control of High Power Factor Matrix Converter using Mapping Function (매핑함수에 의한 고역률 매트릭스 컨버터의 제어)

  • Kim, Chun-Sik;Kim, Kwang-Tae;Suh, Ki-Young;Kwon, Soon-Kurl;Lee, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1242-1244
    • /
    • 2000
  • A new control method using average comparison strategy have been proposed in this paper. This control method realizes sinusoidal input and output current. unity input displacement factor regardless of load power factor. Moreover, compensation of the asymmetrical and/or harmonic containing input voltage is automatically realized, and calculation time of control function is reduced.

  • PDF

A novel energy-efficient bridgeless boost AC to DC converter (효율을 고려한 새로운 AC/DC 컨버터)

  • Yoon, Kyoung-Kuk;Kim, Seong-Hwan;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.223-227
    • /
    • 2016
  • Power supplies make the load compatible with its power source. DC power supplies are extensively used with most electrical and electronic appliances such as computers, television, and audio sets. The presence of non-linear loads results in a low power factor and higher harmonics in the power system. Several techniques for power-factor correction and harmonic reduction have been reported in the literature. This paper proposes a bridgeless boost converter that improves the power factor and reduces the harmonic content in input line currents as compared to full-bridge rectifiers. This bridgeless boost converter eliminates the need of a line-voltage bridge rectifier in conventional boost converter and thereby reduces conduction losses. The effectiveness of the proposed scheme is verified by computer simulations by using the PSIM software.

Characteristics Analysis of Power Capacitor at Sag & Swell (순간적인 전압강하 및 순간 전압 융기 발생시 전력용 커패시터의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Il-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.21-28
    • /
    • 2009
  • Power capacitor has been used to compensate for the low power factor of inductive load and to reduce harmonics generated by the power conversion device with reactor. Power quality is mainly referred to the voltage quality and it is very important for the stable operation of load. But if voltage rms is temporary changed, it acts on capacitor as an electrical stress. In this paper, we analyzed that capacitor can be given by voltage, current and capacity's variance under the sag and swell condition. If reactor is connected at capacitor, sag can be aside from the question. But it can act an amount of stress on capacitor in the swell region.

Parallel Operation Characteristics of Utility Interactive Photovoltaic System and Revolving Field Type Synchronous Generator (계통연계 태양광발전시스템과 회전계자형 동기발전기의 병렬운전 특성)

  • Ryu, Yeon-Soo;Yoo, Wang-Jin;Lee, Checl-Gyu;Moon, Jong-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.43-48
    • /
    • 2008
  • Through simulations and field experiment on A.C. parallel operation of both Utility Interactive Photovoltaic System and Diesel Engine Revolving Field Type Synchronous Generator, following factors have been found. First, the inverter should be operated in three modes of frequency(mode.1: ${\pm}$0.3Hz, mode.2: ${\pm}$1Hz, mode.3: ${\pm}$2Hz) as default, considering properties of operating Synchronous Generator. Second, as a result of supplying 13.5kW of residual power, it has been found that Synchronous Generator takes the power input only as reactive power, because it was electrically stable with frequency of 60.14Hz and high voltage of 222.3V even when power factor was -0.94. Besides, it was mechanically stable, too, because the quake, noise, and temperature of Synchronous Generator in this case were 7.5mm/s, 97dB, and $6^{\circ}C$ respectively, which were lower than normal load connection of 145.6kW; 11.03mm/s. Thus, load share of Revolving Field Type Synchronous Generator reduces according to the supply of Photovoltaic System to the load power. In this experiment, 200kW of Synchronous Generator and 40kW of Photovoltaic System were operated in parallel. The load share was 20% in maximum. and 11.1lit/hr of fuel was saved.

  • PDF

Elasto-plastic stability of circular cylindrical shells subjected to axial load, varying as a power function of time

  • Sofiyev, A.H.;Schnack, E.;Demir, F.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.5
    • /
    • pp.621-639
    • /
    • 2006
  • Stability of a cylindrical shell subject to a uniform axial compression, which is a power function of time, is examined within the framework of small strain elasto-plasticity. The material of the shell is incompressible and the effect of the elastic unloading is considered. Initially, employing the infinitesimal elastic-plastic deformation theory, the fundamental relations and Donnell type stability equations for a cylindrical shell have been obtained. Then, employing Galerkin's method, those equations have been reduced to a time dependent differential equation with variable coefficient. Finally, for two initial conditions applying a Ritz type variational method, the critical static and dynamic axial loads, the corresponding wave numbers and dynamic factor have been found. Using those results, the effects of the variations of loading parameters and the variations of power of time in the axial load expression as well as the variations of the radius to thickness ratio on the critical parameters of the shells for two initial conditions are also elucidated. Comparing results with those in the literature validates the present analysis.

Study on the Improvement of Rotary Blade - Tilling Load Characteristic Analysis of the Three Kinds of Rotary Blade - (로타리 경운날의 개량 연구 -경운날 3종의 경운부하특성 분석 -)

  • 김수성;이여성;우종구
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.391-400
    • /
    • 1997
  • Using the soil bin systems, this study was carried out to investigate the tilling load characteristic for the three kinds of Japanese rotary blade and the possibility of common use for power tiller and tractor rotary. The results obtained from the study are summarized as follows : 1. At all tested soils. the average and maximum tilling torque of all tested blades increased as the tillage pitch did. 2. The torque requirements of newly designed and produced blade was less than that of blade which has been used on power tiller and tractor rotary. 3. The maximum tilling torque of new ONE were decreased 7%, 10~11%, 27% in comparing with another blades at clay loam, loam and sandy loam, respectively. 4. According to observation of the extent of soil adhesion on blade and the contact aspect of blade, new ONE is the most excellent of all tested rotary blades and till smoothly not to compress the untilled soil. From the results of this study. the newly developed blade(new ONE) proved to be good tilling load performance and had a conclusion that it is possible to use it on power tiller and tractor rotary in common.

  • PDF

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

Characteristics analysis of single-phase high power factor PWM boost rectifier (단상 고역률 PWM 승압형 정류기의 특성해석)

  • Kim, J.Y.;Mun, S.P.;Suh, K.Y.;Kim, Y.M.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier (1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기)

  • Mun, S.P.;Kim, S.I.;Yun, Y.T.;Kim, Y.M.;Lee, H.W.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF