• Title/Summary/Keyword: Load Power Factor

Search Result 844, Processing Time 0.031 seconds

A Study on the Load Management for the Stability of Power Supply in summer (하계전력수급 안정을 위한 부하관리 대책)

  • Cho, Kyou-Seung;Kang, Won-Koo;Lee, Youn-Seob
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.17-18
    • /
    • 1991
  • In electric Industry, the improvement of load factor by flattening load has been considered to be more important than any other tasks and has received wide concern and interest. Especially while annual peak load had occurred early evening in winter during past decades, but we found the trend has changed so that annual peak load occurred during the daytime in summer since 1981. In this paper we introduce various method for the load management.

  • PDF

feasibility Study in Application on Load Management of Cooling or Heating Systems (${\cdot}$난방 시스템의 부하관리 프로그램 적용 타당성 검토)

  • Son H.S.;Kim H.C.;Kim H.J.;Hur D.R.;Park J.B.;Shin J.R.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.686-688
    • /
    • 2004
  • We suggest that the core factor which can be established successfully pushing ahead with domestic load management program is finding and keeping management of controllable load resources. We know that load management is mostly the maximum demand power management and participation of DLC program. This paper suggests the way coping with load management suggesting model which air conditioning and heating load facilities are applied to DU program.

  • PDF

Penalty Factor Computation Algorithms for Economic Load Dispatch Based on B-Coefficient and AC Load Flow and their Performance Comparison (경제급전을 위한 B-계수와 조류계산에 의한 페널티계수 산정법의 개발 및 성능비교)

  • Nam, H.K.;Moon, Y.H.;Choi, H.K.;NamKung, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.206-209
    • /
    • 1999
  • This paper presents an improved method of calculating the penalty factors for economic load dispatch based on B-coefficient and AC load flow and their performance comparison. The algorithm for calculating B-coefficients by Meyer is improved and its performance is compared with that of AC load flow. The B-coefficient method is superior to the load flow method in its simplicity and computation speed. However accuracy of the B-coefficient method is not satisfactory when it is applied to the ill-conditioned systems where generators produce excessive reactive power.

  • PDF

A study of residential solar airconditioning system using bidirectional PWM converter (양방향성 PWM컨버터를 이용한 가정용 태양광 에어컨 시스템에 관한 연구)

  • 유권종;송진수;황인호;김홍성;고재석;최규하;김한성
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.358-364
    • /
    • 1996
  • Recently, much power demand from domestic power consumer is weakening the allowable power reserve margin in summer, especially at midday for one day due to a steep increase of air cooling loads such as air conditioner. Therefore solar airconditioning system can'be considered as one of the best remedies to meet the increase of peak power. Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can derate the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problem in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. As results, obtained are the characteristics of the PWM converter such as low distorted current waveform, high power factor and bidirectional power control. And also the stability of proposed system is verified by examining the dynamics of step load change and power reversal testing. (author). refs., figs., tabs.

  • PDF

Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System

  • Yang, Jong-Ryul;Kim, Jinwook;Park, Young-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.569-575
    • /
    • 2014
  • A highly efficient class E power amplifier is demonstrated for application to wireless power transfer system. The amplifier is designed with an L-type matching at the output for harmonic rejection and output matching. The power loss and the effect of each component in the amplifier with the matching circuit are analyzed with the current ratio transmitted to the output load. Inductors with a quality factor of more than 120 are used in a dc feed and the matching circuit to improve transmission efficiency. The single-ended amplifier with 20 V supply voltage shows 7.7 W output power and 90.8% power added efficiency at 6.78 MHz. The wireless power transfer (WPT) system with the amplifier shows 5.4 W transmitted power and 82.3% overall efficiency. The analysis and measurements show that high-Q inductors are required for the amplifier design to realize highly efficient WPT system.

Analysis of Output Voltage Variation of a Voltage Disturbance Generator according to the Load Power Factor in Voltage Sag and Swell Mode (전압 새그 및 스웰 발생 모드에서 부하역률에 따른 전압외란 발생기의 출력전압 변동 해석)

  • Han, Heung-Soo;Jeong, Hye-Soo;Jung, Jae-Hun;Nho, Eui-Cheol;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.80-87
    • /
    • 2016
  • This study investigates output voltage variation of a voltage disturbance generator in case of sag and swell modes. The generator uses series transformers and silicon-controlled rectifier thyristors to provide voltage disturbance; consequently, voltage drop at the output terminal is inevitable. On the basis of the analysis, voltage drop increases as the power factor decreases in lagging. Voltage drop is 3.7 [%] at a power factor (lagging) of 0.8. Simulation and experimental results show the validity of the analysis.

Rapid response control A Utility Interactive Photovoltaic Generation System (계통연계형 태양광발전 시스템의 속응성 제어)

  • Chung, Choon-Byeong;Jeon, Kee-Young;Lee, Sang-Hyun;Han, Kyung-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.279-285
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

A Study on Utility Interactive Energy System using PWM Converter (PWM 컨버터를 이용한 계통연계 에너지시스템에 관한 연구)

  • Kim, Gil-Dong;Lee, Han-Min;Hong, Yong-Ki;Kim, Dea-Gyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.288-291
    • /
    • 2007
  • Since the residential load is an AC load and the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell. In case of driving to interact with utility line, in order to operate at unity power factor, converter must provide the sinusoidal wave current and voltage with same phase of utility line. Since output of solar cell is greatly fluctuated by insolation, it is necessary that the operation of solar cell output in the range of the vicinity of maximum power point. In this paper, DC/AC converter is three phase PWM converter with smoothing reactor. And then, feedforward control used to obtain a superior characteristic for current control and digital PLL circuit used to detect the phase of utility line.

  • PDF

Analysis on Characteristics of Transmission Loss using Marginal Loss Factors Based on the KEPCO's Expected Peak Load Data of Year 2000 (한계손실계수에 의한 한전 예상첨두계통 송전손실 특성 분석)

  • NamKung, Jae-Yong;Choe, Heung-Gwan;Mun, Yeong-Hwan;O, Tae-Gyu;Im, Seong-Hwang;Han, Yong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.333-339
    • /
    • 2001
  • The transmission networks are not perfect conductors and a percentage of the power generated is therefore lost before it reaches the loads. This network loss effects to the cost of suppling power to consumers, and must be considered if the most efficient dispatch and location of generators and loads is to be achieved. In this paper, we propose an approximate calculation of marginal loss factors to analyze characteristics of transmission loss of KEPCO power system. These static marginal loss factors are approximately calculated based on the KEPCO's expected summer peak load data of year 2000.

  • PDF