• Title/Summary/Keyword: Load Power Factor

Search Result 844, Processing Time 0.03 seconds

A Computation Method of B-coefficient With Static Voltage Dependent Load Model (정적 전압의존형 부하모델을 적용한 B계수 산정법)

  • Lee, Myung-Hwan;Chae, Myung-Suk;Shin, Joong-Rin
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.218-220
    • /
    • 1997
  • In power system, economic dispatch problem is to minimize fuel cost with inequality constraints of generator output. To solve this problem it is very important to express power loss equation that have Quadratic function of generator power included B-coefficient. This paper presents a method in determining B-coefficient by use A-matrix that is calculated by power flow considering voltage dependent static load model. The proposed algorithm is tested with IEEE 6 bus sample system, which shows the result in each cases by the change of load component factor.

  • PDF

A computation module to compensate the power factor at 2 parameter equivalent circuit for modelling 3 phase induction motors (2 회로정수 방식 3상유도전동기 등가회로에서의 역률보상 연산모듈)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1195-1202
    • /
    • 2010
  • When modelling lots of induction motors to design and configure an engine room simulator, the 2 parameters equivalent circuit has many practical benefits as it reduces working hours considerably without requiring complicated technical data from makers except the ratings of motors. The basic properties such as torque and load current are shown well matched with real cases by this method, but almost the only drawback of 2 parameters circuit is that it reveals inherently higher power factor in the whole operation range due to disregarding the exciting current of the induction motor to maximize the simplification. This paper suggests a modelling module as a practical tool to compensate the power factor by inserting a virtual compensation current into the load current from 2 parameters equivalent circuit, and the simulated results show satisfactory outputs and the improved power factor indication by performance curves when compared to the cases of 2 parameters-equivalent circuit.

Single-Stage High Power Factor Converter for 90-260Vrms Input (90-260Vrms 입력 범위를 갖는 단일 전력단 고역률 컨버터)

  • 김학원;문건우;조관열;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.18-29
    • /
    • 2002
  • Generally, the single-stage power factor corrected converter has a problem of high dc link voltage. In the case of high line voltage, especially, the dc link voltage is verb high under the light load condition. To solve this problem, a new single stage power factor corrected AC/DC converter has been proposed. The proposed converter has huck topology as a power factor corrector. To prove feasibility of the proposed converter, the design example of the proposed converter has been presented. The design considerations and experimental results for the proposed converter have been shown. The experimental results show that the line input current harmonics can meet IEC1000-3-2 Class D requirements for the range of line input voltage from 90Vrms to 260Vrms.

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Development of Bus Load Forecasting System based on Windows95 : Part I (윈도우즈95에 기초한 모선수요예측시스템의 개발(I))

  • Jeon, Dong-Hoon;Song, Seok-Ha;Lim, Joo-Il;Hwang, Kab-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.169-171
    • /
    • 1996
  • In this paper, we have developed bus load forecasting system (BUSLOF) based on Windows 95. It has been developed for the secure operation of electric power system. It forecasts regional load and bus load using regional distribution factor(RDF) and bus distribution factor (BDF) which are calculated from bus load in the past. It is equipped with graphic user interface(GUI) which enables a user to easily access to the system. The performance of the developed system is estimated in sample data.

  • PDF

Comparison of VUF using Resistor & Inductive Load (저항성 및 유도성 부하의 운전시 전압불평형율의 비교)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong;Lee, Jong-Han;Lee, Dong-Ju
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1062-1064
    • /
    • 2005
  • 3 phase 4-wire system has been widely used in the customer's application due to merit of 1 bank construction of loads such as 1-phase lighting, heat and 3-phase motor. But if the load distribution is not uniformed by the operation conditions, voltage unbalance is highly appeared by the difference of each phase current value. Especially, if the linear load such as resistance or inductive load has different power factor value, voltage unbalance factor is not the same due to the phase angle and magnitude of each phase voltage. In this paper, we composed the measurement device and analyzed by varying of load pattern.

  • PDF

A Study on the Compensation Control of Distribution Static Compensator Considering Induction Motor Load Using PSCAD/EMTDC (PACAD/EMTDC을 이용한 유도기 부하를 고려한 DSTATCOM의 보상제어에 관한 연구)

  • Lee, Myung-Un;Cho, Myung-Hyun
    • 전자공학회논문지 IE
    • /
    • v.43 no.1
    • /
    • pp.32-38
    • /
    • 2006
  • When induction motor moves, power quality decline of line is risen seriously because provoking voltage drop the moment to system power supply by excessive moving current as well as power-factor drop in case drive by light-load because current reaches in 6 times $\sim$ 8 times of rated current. In this paper, a modeling did an distribution system 13 bus type model and induction machine load presents in IEEE using a PSCAD/EMTDE package, and it displayed an accident conspiracy and a compensating factor of DSTATCOM through simulation show.

Unified Reliability and Its Cost Evaluation in Power Distribution Systems Considering the Voltage Magnitude Quality and Demand Varying Load Model (전압 크기의 품질 및 전력수요 변동모델을 고려한 배전계통의 통합적인 신뢰도 및 비용 평가)

  • Yun, Sang-Yun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.12
    • /
    • pp.705-712
    • /
    • 2003
  • In this paper, we propose new unified methodologies of reliability and its cost evaluation in power distribution systems. The unified method means that the proposed reliability approaches consider both conventional evaluation factor, i.e. sustained interruptions and additional ones, i.e. momentary interruptions and voltage sags. Because the three voltage quality phenomena generally originate from the outages on distribution systems, the basic and additional reliability indices are summarized considering the fault clearing mechanism. The proposed unified method is divided into the reliability evaluation for calculating the reliability indices and reliability cost evaluation for assessing the damage of customer. The analytic and probabilistic methodologies are presented for each unified reliability and its cost evaluation. The time sequential Monte Carlo technique is used for the probabilistic method. The proposed DVL(Demand Varying Load) model is added to the reliability cost evaluation substituting the average load model. The proposed methods are tested using the modified RBTS(Roy Billinton Test System) form and historical reliability data of KEPCO(Korea Electric Power Corporation) system. The daily load profile of the each customer type in domestic are gathered for the DVL model. Through the case studies, it is verified that the proposed methods can be effectively applied to the distribution systems for more detail reliability assessment than conventional approaches.