• Title/Summary/Keyword: Load Insensitive

Search Result 60, Processing Time 0.032 seconds

Load Insensitivity Analysis of Balanced Power Amplifier for W-CDMA Handset Applications (W-CDMA 단말기용 Balanced 전력증폭기의 Load Insensitivity 분석)

  • Kim, Un-Ha;Kang, Sung-Yoon;Cheon, Clifford D.Y.;Kwon, Young-Woo;Kim, Jung-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.68-75
    • /
    • 2012
  • The load-insensitivity of the balanced power amplifier(PA) for W-CDMA handset applications is analyzed. The load impedances of the two parallel amplifiers in the balanced PA depending on the output load mismatch are mathematically calculated and with the result, the phase of reflection coefficient at which the linear output power is severely degraded is investigated. From the analysis, we proposed that the linearity of the balanced PA at the phase can be improved by properly increasing the transistor size and thus, multiple balanced PA's with different transistor size are designed and simulated. The simulation result showed that the balanced PA with larger transistor size has improved linear output power under VSWR=4:1.

Design of an Adaptive Speed Regulator for a Surface-Mounted Permanent Magnet Synchronous Motor (표면부착형 영구자석 동기전동기의 적응속도제어기 설계)

  • Choi, Young-Sik;Yu, Dong-Young;Jung, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.425-431
    • /
    • 2010
  • This paper proposes a new adaptive speed controller for the speed control of a surface-permanent magnet synchronous motor. The proposed adaptive controller is very insensitive to model parameter and load torque variations since it does not require any accurate information on the motor parameter and load torque values. Moreover, the stability of the proposed control system is analytically proven. To verify the effectiveness of the proposed adaptive speed controller, simulation and experimental results are shown under motor parameter and load torque variations. It is clearly validated that the proposed speed regulator can precisely control the speed of permanent magnet synchronous motors.

A Highly Efficient Multi-Mode Balanced Power Amplifier for W-CDMA Handset Applications (W-CDMA 단말기용 고효율 다중 모드 Balanced 전력증폭기)

  • Kim, Un-Ha;Park, Sung-Hwan;Park, Hong-Jong;Kwon, Young-Woo;Kim, Jung-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.606-612
    • /
    • 2012
  • A highly efficient multi-mode balanced power amplifier(PA) structure is proposed for W-CDMA handset applications. The proposed PA has 2-stage amplifier configuration and the stage-bypass and load impedance switching techniques were applied to enhance power efficiency at medium power level as well as low output power level. Using the two techniques, four highly efficient power modes were realized. To demonstrate the usefulness of the proposed structure, a GaAs HBT balanced PA module was designed, fabricated, and measured.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

A Study on Fatigue Crack Growth Model Considering High Mean Loading Effects Based on Structural Stress (고평균하중을 고려한 구조응력 기반의 피로균열성장 모델에 관한 연구)

  • Kim, Jong-Sung;Kim, Cheol;Jin, Tae-Eun;Dong, P.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.220-225
    • /
    • 2004
  • The mesh-insensitive structural stress procedure by Dong is modified to apply to the welded joints with local thickness variation and inignorable shear/normal stresses along local discontinuity surface. In order to make use of the structural stress based K solution for fatigue correlation of welded joints, a proper crack growth model needs to be developed. There exist some significant discrepancies in inferring the slope or crack growth exponent in the conventional Paris law regime. Two-stage crack growth model was not considered since its applications are focused upon the fatigue behavior in welded joints in which the load ratio effects are considered negligible. In this paper, a two-stage crack growth law considering high mean loading is proposed and proven to be effective in unifying the so-called anomalous short crack growth data.

  • PDF

Control of the Buck Converter using the Function Control Law (함수제어 기법을 이용한 Buck 컨버터 제어)

  • 이성백;원영진;김태웅
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.6
    • /
    • pp.81-89
    • /
    • 1997
  • In order to achieve the zero voltage regulation of the output voltage, the function control law will be used. In the previous function control law, only the proportional controller is used and the stability of the closed loop system was not analyzed. In this paper, for the realization of the control law, a new method to retrieve the low frequency component of the inductor voltage is proposed and analyzed. The large signal closed loop characteristics are alos analyzed to ensure the stable operation of the system disturbances. By using the function control law in the control system, the effect of the disturbance of the supply voltage is reduced in 93.3% for the direct dusty ration method. Also, in the effect of the disturbance of the load current, the output voltage has a logn recovery-time and is changed proportionally in the direct duty ratio method, but has stable in the function control law. Finally, the analysis shows that the disturbance of the output voltage being due to the supply voltage variation can be eliminated completely and the closed loop output voltage is insensitive to the disturbance of the load current. Therefore, it is proved that by using the function control law, the switching power supply with zero-voltage regulation output voltage can be realized.

  • PDF

A Novel Technique for Tuning PI-Controllers in Induction Motor Drive Systems for Electric Vehicle Applications

  • Elwer Ayman Saber
    • Journal of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.322-329
    • /
    • 2006
  • In the last decade, the increasing restrictions imposed on the exhaust emissions from internal combustion engines and traffic limitations have increased the development of electrical propulsion systems for automotive applications. The goal of electrical and hybrid vehicles is the reduction of global emissions, which in turn leads to a decrease in fuel resource exploitation. This paper presents a novel approach for control of Induction Motors (IM) using the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Proportional Integral Controller (PI-Controller). The overall system is simulated under various operating conditions. The use of PSO as an optimization algorithm makes the drive robust and insensitive to load variation with faster dynamic response and higher accuracy. The system is tested under variable operating conditions. The simulation results show a positive dynamic response with fast recovery time.

Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

Speed Control of Induction Motors using GA based PI Controller

  • Lee, Jae-Do;Lee, Hak-Ju;Oh, Sung-Up;Joo, Hyung-Jun;Seong, Se-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.404-408
    • /
    • 2001
  • This paper deals with speed control of induction motors with a gain tuning based on simple Genetic Algorithms, which are search algorithms based on the mechanics of natual selection and genetics. Based on the designed control system structure, the indirect vector control system of induction motors is simulated. The simulation results show that the system has a strong robust to the parameter variation and is insensitive to the load disturbance. Thus, the proposed PI controller based on genetic algorithms is superior to manually tuned classical PI controller in improving the speed control performance of induction motors.

  • PDF

Predictive control based partial switching PFC converter for achieving high efficiency (고효율 구현을 위한 예측제어 기반 부분 스위칭 PFC 컨버터)

  • Choi, Yeong-Jun;Kim, Tae-Jin;Kim, Rae-Young
    • Proceedings of the KIPE Conference
    • /
    • 2014.11a
    • /
    • pp.1-2
    • /
    • 2014
  • In this paper the partial switching PFC converter which is based on predictive control is proposed. In terms of satisfying the harmonic standard, the predictive control shows a similar performance to the conventional average current mode control PFC in the normal input condition. Moreover, the current harmonic characteristic is insensitive to the distorted input voltage. With predictive control method, novel on-line partial switching strategy is suggested in this paper. Depending on the operating condition, the partial switching PFC converter can boost its output voltage. Also when its efficiency needs to be improved, according to load condition, the partial switching can be achieved. The proposed strategy is proved by the results of FFT and the loss analysis using PSIM 9.0.

  • PDF