• Title/Summary/Keyword: Load Index

Search Result 978, Processing Time 0.034 seconds

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.

Structural Optimization of a Thick-Walled Composite Multi-Cell Wing Box Using an Approximation Method

  • Kim, San-Hui;Kim, Pyung-Hwa;Kim, Myung-Jun;Park, Jung-sun
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • In this paper, a thickness compensation function is introduced to consider the shear deformation and warping effect resulting from increased thickness in the composite multi-cell wing box. The thickness compensation function is used to perform the structure optimization of the multi-cell. It is determined by minimizing the error of an analytical formula using solid mechanics and the Ritz method. It is used to define a structural performance prediction expression due to the increase in thickness. The parameter is defined by the number of spars and analyzed by the critical buckling load and the limited failure index as a response. Constraints in structural optimization are composed of displacements, torsional angles, the critical buckling load, and the failure index. The objective function is the mass, and its optimization is performed using a genetic algorithm.

Optimal Voltage and Reactive Power Scheduling for Saving Electric Charges using Dynamic Programming with a Heuristic Search Approach

  • Jeong, Ki-Seok;Chung, Jong-Duk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.329-337
    • /
    • 2016
  • With the increasing deployment of distributed generators in the distribution system, a very large search space is required when dynamic programming (DP) is applied for the optimized dispatch schedules of voltage and reactive power controllers such as on-load tap changers, distributed generators, and shunt capacitors. This study proposes a new optimal voltage and reactive power scheduling method based on dynamic programming with a heuristic searching space reduction approach to reduce the computational burden. This algorithm is designed to determine optimum dispatch schedules based on power system day-ahead scheduling, with new control objectives that consider the reduction of active power losses and maintain the receiving power factor. In this work, to reduce the computational burden, an advanced voltage sensitivity index (AVSI) is adopted to reduce the number of load-flow calculations by estimating bus voltages. Moreover, the accumulated switching operation number up to the current stage is applied prior to the load-flow calculation module. The computational burden can be greatly reduced by using dynamic programming. Case studies were conducted using the IEEE 30-bus test systems and the simulation results indicate that the proposed method is more effective in terms of saving electric charges and improving the voltage profile than loss minimization.

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

A Study on the Decision of Optimum Installed Reserve Rate by Loss of Load Expectation (공급지장기대치에 의한 적정설비예비율 결정에 관한 연구)

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min;Yun, Yong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.103-104
    • /
    • 2008
  • This paper proposes an alternative methodology for deciding an optimum deterministic reliability level (IRR; Installed Reserve Rate) by using probabilistic reliability criterion (LOLE; Loss of Load Expectation). Additionally, case studies using the proposed method induce the characteristics of relationship between the probabilistic reliability index (LOLE) and deterministic reliability index (IRR) for 2008 year in Korea power system. The case study presents a possibility that an optimum IRR level in Korea can be assessed using the proposed method. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion in Korea is that the loss of load expectation shall not exceed the available capacity more than five day in ten years (=0.5[days/year]). The probabilistic reliability evaluation and production cost simulation program which is called PRASim is used in order to evaluate the relationship and optimum IRR in this paper.

  • PDF

Reliability Analysis Modeling for LRFD Design of Bridge Abutments (LRFD 설계를 위한 교대의 신뢰성 해석 모델)

  • Eom, Jun-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.8
    • /
    • pp.5-11
    • /
    • 2014
  • The objective of this paper is to develop a rational reliability analysis procedure for the LRFD design provisions of bridge substructures. A bridge abutments is considered in this study. The reliability analysis is applied to determine the relationship between the major design parameters for bridge abutment and reliability index. The considered load components include dead load, vertical and horizontal earth pressure, earth surcharge, and vehicle live load. Several limit states are considered: foundation bearing capacity, sliding, and overturning. The analysis results show that the most important parameter in the reliability analysis is the effective stress friction angle of the soil. The reliability indices are calculated using Monte Carlo simulations for a selected bridge abutment. The results of the sensitivity analysis indicate that reliability index is most sensitive with regard to resistance factor and horizontal earth pressure factor.

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

A Study on Decision of Optimum Installed Reserve Rate using Probabilistic Reliability Criterion (확률론적인 신뢰도기준에 의한 적정설비예비율의 결정에 관한 연구)

  • Park, Jeong-Jae;Choi, Jae-Seok;Yun, Yong-Bum;Jung, Young-Bum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1318-1326
    • /
    • 2008
  • This paper proposes an alternative methodology for deciding an optimum deterministic reliability level (IRR; Installed Reserve Rate) by using probabilistic reliability criterion (LOLE; Loss of Load Expectation). Additionally, case studies using the proposed method induce the characteristics of relationship between the probabilistic reliability index (LOLE) and deterministic reliability index (IRR) for 2008 and 2010 years in Korea power system. The case study presents a possibility that an optimum IRR level in Korea can be assessed using the proposed method. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion in Korea is that the loss of load expectation shall not exceed the available capacity more than five day in ten years (=0.5[days/year]), The probabilistic reliability evaluation and production cost simulation program which is called PRASim is used in order to evaluate the relationship and optimum IRR in this paper.

Reliability studies on RC beams exposed to fire based on IS456:2000 design methods

  • Balaji, Aneesha;Aathira, M.S.;Pillai, T.M. Madhavan;Nagarajan, Praveen
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.853-866
    • /
    • 2016
  • This paper examines a methodology for computing the probability of structural failure of reinforced concrete beams subjected to fire. The significant load variables considered are dead load, sustained live load and fire temperature. Resistance is expressed in terms of moment capacity with random variables taken as yield strength of steel, concrete class (or grade of concrete), beam width and depth. The flexural capacity is determined based on the design equations recommended in Indian standard IS456:2000. Simplified method named $500^{\circ}C$ isotherm method detailed in Eurocode 2 is incorporated for fire design. A transient thermal analysis is conducted using finite element software ANSYS$^{(R)}$ Release15. Reliability is evaluated from the initial state to 4h of fire exposure based on the first order reliability method (FORM). A procedure is coded in MATLAB for finding the reliability index. This procedure is validated with available literature. The effect of various parameters like effective cover, yield strength of steel, grade of concrete, distribution of reinforcement bars and aggregate type on reliability indices are studied. Parameters like effective cover of concrete, yield strength of steel has a significant effect on reliability of beams. Different failure modes like limit state of flexure and limit state of shear are checked.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.