• Title/Summary/Keyword: Load Hysteresis

Search Result 224, Processing Time 0.031 seconds

Loss Analysis and Efficiency Evaluations of Synchronous Reluctance Motor Using Coupled FEM & Preisach Modelling (유한요소법과 프라이자흐 모델을 이용한 SynRM의 손실해석과 효율평가)

  • Cho, Yong-Hyun;Lee, Il-Kyo;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.718_719
    • /
    • 2009
  • This paper deals with the loss analysis and efficiency evaluations in a synchronous reluctance motor (SynRM) using a coupled transient finite element method (FEM) and Preisach modeling, which is presented to analyze the characteristics under the effect of saturation and hysteresis loss. The focus of this paper is the efficiency evaluation relative to hysteresis loss, copper loss, etc. on the basis of speed, load condition in a SynRM. Computer simulation and experimental result for the efficiency using dynamometer show the propriety of the proposed method.

  • PDF

A SOC Estimation using Kalman Filter for Lithium-Polymer Battery (칼만 필터를 이용한 리튬-폴리머 배터리의 SOC 추정)

  • Jang, Ki-Wook;Chung, Gyo-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The SOC estimation method based on Kalman Filter(KF) requires the accurate battery model to express the electrical characteristics of the battery. However, the performance of KF SOC estimator can hardly be improved because of the nonlinear characteristic of the battery. This paper proposes the new KF SOC estimator of Lithium-Polymer Battery(LiPB), which considers the variation of parameters based on the hysteresis effect, the magnitude of SOC, the charging/discharging mode and the on/off load conditions. The proposed SOC estimation method is verified with the PSIM simulation combined the experimental data of the LiPB.

Efficiency Evaluations of Synchronous Reluctance Motor Using Coupled FEM & Preisach Modelling (프라이자흐 모델이 결합된 유한요소해석 및 실험을 통한 동기형 릴럭턴스 전동키의 효율 특성 평가)

  • Lee, D.D.;Lee, M.M.;Sim, J.M.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.49-51
    • /
    • 2002
  • This paper deals with the efficiency evaluations in a synchronous reluctance motor (SynRM) using a coupled transient finite element method (FEM) and Preisach modeling, which is Presented to analyze the characteristics under the effect of saturation and hysteresis loss. The focus of this paper is the efficiency evaluation relative to hysteresis loss, copper loss, etc. on the basis of speed, load condition in a SynRM. Computer simulation and experimental result for the efficiency using dynamometer show the propriety of the proposed method.

  • PDF

Static Behavior Characteristics of Disc Spring Stacks (적층 접시스프링의 정적 거동 특성)

  • Kim, Youngheub;Cho, Seunghyun;Park, Dong Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • The wide application of disc springs to the designing of mechanical products with space limit is mainly attributable to their property of sustaining large axial load with small displacement. Due to the impediments in expecting the final results caused by the significant differences existing between a single unit and a stacked form, the force-displacement characteristics of a single disc spring and stacked disc springs are mainly examined in this study. In particular, the hysteresis of the series stack and the parallel stack will be investigated through the FE analysis and the analytical results will finally be compared with the acquired experimental data. In the final result, the analytical results were in accordance with the experimental data.

Efficiency Evaluation of PMASynRM vs. SynRM Using Coupled FEM & Preisach Modeling (유한요소법과 프라이자흐모델이 결합된 해석기법을 이용한 PMASynRM과 SynRM의 효율특성 비교)

  • Lee, Rea-Hwa;Jang, Young-Jin;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1092-1094
    • /
    • 2005
  • This paper deal with the efficiency evaluations in a Synchronous reluctance motor(SynRM) Vs. PMASynRM using a coupled transient finite element method(FEM) and preisach modeling, which is presented to analyze the characteristics under the effect of saturation and hysteresis loss. The focus of this paper is the efficiency evaluation relative to hysteresis loss, copper loss, etc. on the basis of load condition in a SynRM and PMASynRM. Computer simulation and experiment at result for the efficiency using dynamometer shoe the propriety of the proposed method.

  • PDF

An Analytical Study on the Performance of Buckling Restrained Brace Reinforced with Steel Plate (강판으로 보강된 비좌굴가새의 성능에 대한 해석적 연구)

  • Kim, Dae-Hong;Kim, Hyeok-Soo;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.51-57
    • /
    • 2022
  • In this paper, based on the finite element analysis model verified in previous studies, a new model of a buckling restrained brace reinforced with a steel plate was proposed. A design formula was proposed for the new model to dissipate energy without buckling the steel core under load protocol, and the performance of the model satisfying the design formula was evaluated by comparing it with the previous model through the results of hysteresis loop, bi-linear curve, cumulative energy dissipation capacity, and equivalent viscous damping.

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

A Study on the Sensorless Speed Control of Permanent Magnet Direct Current Motor (영구자석 직류전동기의 센서리스 속도제어에 관한 연구)

  • Oh, Sae-Gin;Kim, Hyun-Chel;Kim, Jong-Su;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.694-699
    • /
    • 2012
  • This paper proposes a new sensorless speed control scheme of permanent magnet DC motor using a numerical model and hysteresis controller, which requires neither shaft encoder, speed estimator nor PI controllers. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing torque difference, the rotor speed approaches to the model speed, namely setting value and the system can control motor speed precisely. As the numerical model whose electric parameters are the same as those of the actual motor is adopted, the armature rotating speed can be converged to the setting value by controlling torque on both sides to be equalized. And the hysteresis controller controls torque by restricting the torque errors within respective hysteresis bands, and motor torque are controlled by the armature voltage. The experiment results indicate good speed and load responses from the low speed range to the high, show accurate speed changing performance.

Effect of Friction on the Hysteresis of the Thrust Forces Acting on Auto Leveling Devices in Vehicle Head Lamps (헤드 램프 빛의 각도 자동 조절 장치에 작용하는 추력의 히스테리시스에 대한 마찰의 영향)

  • Baek, Hong;Kim, Jae-Hoon;Nam, Jin-Sik;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.369-375
    • /
    • 2019
  • This paper presents a new method on how to calculate the thrust forces acting on an auto-leveling device in headlamps for passenger vehicles. The leveling device is used to lower the angle of lights when a load in the trunk of the vehicle lifts it. In the process of the headlamp design, it is imperative to predict the external forces so that the designers can decide whether to proceed or not. The device is composed of three pivot joints with no reaction moment, a plate that holds the lamp, and a leveling motor that changes rotation to linear motion. In this study, force balance, moment balance, and geometric compatibility are applied to the leveling device system so that a nonlinear system of equations can be derived; the multi-dimensional Newton-Raphson algorithm is then used to solve these. A sensitivity analysis is carried out to verify which design variables affect the system the most: the mass of the lamp and the height between the pivot and leveling device affect the thrust forces the most. Then, considering the friction forces between the moving parts, the hysteresis of the forces are derived. An experimental apparatus, designed and developed in this study, is used to verify the exactness of the derived equations. The results from experiments coincide well with the calculated results. The friction hysteresis, in particular, proves this upon analysis.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.