• 제목/요약/키워드: Load Hysteresis

검색결과 224건 처리시간 0.024초

감즙 염색에 의한 면직물의 역학적 특성과 표면형태 (Mechanical Properties and Surface Morphology of Cotton Fabrics Dyed with Persimmon Juice)

  • 허만우
    • 한국염색가공학회지
    • /
    • 제24권4호
    • /
    • pp.296-304
    • /
    • 2012
  • For development of dyeability, the cotton fabric was dyed repeatedly with persimmon juice by padding mangle. We evaluated the mechanical properties and hand value by Kawabata Evaluation System, and observed the change of surface morphology. The results obtained from this study were as follows. With the increase of repeating padding times of dyeing, the linearity of load-extension curve and tensile energy per unit length of the cotton fabric were increased, but the tensile resilience of fabric was decreased. The value of shear stiffness and shear hysteresis were increased. Also compression resilience and linearity of compression thickness curve were increased. The cotton fabric dyed with persimmon juice had shown the thickness and weight increase as the number of padding increase. As repeating times of dyeing with persimmon juice were increased, among the 6 hand values, the item of stiffness, anti-drape stiffness, fullness and softness were increased, while flexibility with soft feeling and crispness were greatly decreased. The amount of coated persimmon juice on the surface of the fabric was gradually increased as the padding times of dyeing. And cotton fabrics were dyed evenly with persimmon juice by padding mangle.

Cyclic testing of short-length buckling-restrained braces with detachable casings

  • Pandikkadavatha, Muhamed S.;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • 제10권3호
    • /
    • pp.699-716
    • /
    • 2016
  • Buckling-restrained braced frames (BRBFs) are commonly used as lateral force-resisting systems in the structures located in seismic-active regions. The nearly symmetric load-displacement behavior of buckling-restrained braces (BRBs) helps in dissipating the input seismic energy through metallic hysteresis. In this study, an experimental investigation has been conducted on the reduced-core length BRB (RCLBRB) specimens to evaluate their hysteretic and overall performance under gradually increased cyclic loading. Detachable casings are used for the concrete providing confinement to the steel core segments of all test specimens to facilitate the post-earthquake inspection of steel core elements. The influence of variable core clearance and the local detailing of casings on the cyclic performance of RCLBRB specimens has been studied. The RCLBRB specimen with the detachable casing system and a smaller core clearance at the end zone as compared to the central region exhibited excellent hysteretic behavior without any slip. Such RCLBRB showed balanced higher yielding deformed configuration up to a core strain of 4.2% without any premature instability. The strength-adjustment factors for the RCLBRB specimens are found to be nearly same as that of the conventional BRBs as noticed in the past studies. Simple expressions have been proposed based on the regression analysis to estimate the strength-adjustment factors and equivalent damping potential of the RCLBRB specimens.

Improvement of the cyclic response of RC columns with inadequate lap splices-Experimental and analytical investigation

  • Kalogeropoulos, George I.;Tsonos, Alexander-Dimitrios G.
    • Earthquakes and Structures
    • /
    • 제16권3호
    • /
    • pp.279-293
    • /
    • 2019
  • The overall seismic performance of existing pre 1960-70s reinforced concrete (RC) structures is significantly affected by the inadequate length of columns' lap-spliced reinforcement. Due to this crucial structural deficiency, the cyclic response is dominated by premature bond - slip failure, strength and stiffness degradation, poor energy dissipation capacity and low ductility. Recent earthquakes worldwide highlighted the importance of improving the load transfer mechanism between lap-spliced bars, while it was clearly demonstrated that the failure of lap splices may result in a devastating effect on structural integrity. Extensive experimental and analytical research was carried out herein, to evaluate the effectiveness and reliability of strengthening techniques applied to RC columns with lap-spliced reinforcement and also accurately predict the columns' response during an earthquake. Ten large scale cantilever column subassemblages, representative of columns found in existing pre 1970s RC structures, were constructed and strengthened by steel or RC jacketing. The enhanced specimens were imposed to earthquake-type loading and their lateral response was evaluated with respect to the hysteresis of two original and two control subassemblages. The main variables examined were the lap splice length, the steel jacket width and the amount of additional confinement offered by the jackets. Moreover, an analytical formulation proposed by Tsonos (2007a, 2019) was modified appropriately and applied to the lap splice region, to calculate shear stress developed in the concrete and predict if yielding of reinforcement is achieved. The accuracy of the analytical method was checked against experimental results from both the literature and the experimental work included herein.

Augmentation of Fractional-Order PI Controller with Nonlinear Error-Modulator for Enhancing Robustness of DC-DC Boost Converters

  • Saleem, Omer;Rizwan, Mohsin;Khizar, Ahmad;Ahmad, Muaaz
    • Journal of Power Electronics
    • /
    • 제19권4호
    • /
    • pp.835-845
    • /
    • 2019
  • This paper presents a robust-optimal control strategy to improve the output-voltage error-tracking and control capability of a DC-DC boost converter. The proposed strategy employs an optimized Fractional-order Proportional-Integral (FoPI) controller that serves to eliminate oscillations, overshoots, undershoots and steady-state fluctuations. In order to significantly improve the error convergence-rate during a transient response, the FoPI controller is augmented with a pre-stage nonlinear error-modulator. The modulator combines the variations in the error and error-derivative via the signed-distance method. Then it feeds the aggregated-signal to a smooth sigmoidal control surface constituting an optimized hyperbolic secant function. The error-derivative is evaluated by measuring the output-capacitor current in order to compensate the hysteresis effect rendered by the parasitic impedances. The resulting modulated-signal is fed to the FoPI controller. The fixed controller parameters are meta-heuristically selected via a Particle-Swarm-Optimization (PSO) algorithm. The proposed control scheme exhibits rapid transits with improved damping in its response which aids in efficiently rejecting external disturbances such as load-transients and input-fluctuations. The superior robustness and time-optimality of the proposed control strategy is validated via experimental results.

Cyclic performance of steel fiber-reinforced concrete exterior beam-column joints

  • Oinam, Romanbabu M.;Kumar, P.C. Ashwin;Sahoo, Dipti R.
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.533-546
    • /
    • 2019
  • This study presents an experimental investigation on six beam-column joint specimens under the lateral cyclic loading. The aim was to explore the effectiveness of steel fiber-reinforced concrete (SFRC) in reducing the transverse shear stirrups in beam-column joints of the reinforced concrete (RC) frames with strong-columns and weak-beams. Two RC and four SFRC specimens with different types of reinforcement detailing and steel fibers of volume fraction in the range of 0.75-1.5% were tested under gradually increasing cyclic displacements. The main parameters investigated were lateral load-resisting capacity, hysteresis response, energy dissipation capacity, stiffness degradation, viscous damping variation, and mode of failure. Test results showed that the diagonally bent configuration of beam longitudinal bars in the beam-column joints resulted in the shear failure at the joint region against the flexural failure of beams having straight bar configurations. However, all SFRC specimens exhibited similar lateral strength, energy dissipation potential and mode of failure even in the absence of transverse steel in the beam-column joints. Finally, a methodology has been proposed to compute the shear strength of SFRC beam-column joints under the lateral loading condition.

공업용 플라스틱의 선조립형 비좌굴가새로 보강한 건축물의 내진 성능 평가 (Seismic Performance Evaluation of Structure Reinforced with Precast-Buckling Restrained Brace of Engineering Plastics)

  • 김유성;박병태;이준호
    • 한국공간구조학회논문집
    • /
    • 제21권4호
    • /
    • pp.31-38
    • /
    • 2021
  • The precast-buckling restrained braces(PC-BRB) reinforced with engineering plastics that can compensate for the disadvantages in the manufacturing process of the existing buckling restrained brace. In this study, to examine the applicability of PC-BRB to actual structures, example structures similar to school facilities were selected and the reinforcement effect was analyzed analytically according to the damping design procedure of PC-BRB. Load-displacement curve through the incremental loading test appeared similar to the bilinear curve. Applying test result, Analytical model of PC-BRB model was constructed and applied to the example structure. As a result of the analysis, the PC-BRB showed stable hysteresis behavior without lowering the strength, and the inter story drift ratio and the shear force were reduced due to the damping effect. In addition, the reduction ratio of the shear force was similar to the reduction ratio assumed when designing the damping device.

Cyclic behavior of steel beam-to-column connections with novel strengthened angle components

  • Kang, Lan;Zhang, Cheng
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.791-804
    • /
    • 2022
  • As a type of semi-rigid connection, the top and seat angle connections are popular in current structures owing to their good cyclic performance and simple erection. However, their stiffness and load bearing capacity are relatively insufficient. This study proposes two strengthening methods to further increase the stiffness and strength of bolted-angle joints while maintaining satisfactory energy dissipation capacity (EDC) and ductility. Cyclic loading tests were conducted on six joint specimens with different strengthened angle components. Based on the test results, the influence of the following important factors on the cyclic behavior of steel joint specimens was investigated: the position of the rib stiffeners (edge rib stiffeners and middle rib stiffener), steel strength grade of rib stiffeners (Q345 and Q690), and additional stiffeners or not. In addition, the finite element models of these specimens were built and validated through a comparison of experimental and numerical results. The stiffness and bearing capacity of the bolted-angle joints could be improved significantly by utilizing the novel strengthened joints proposed in this study. Moreover, this can be achieved with almost no increase in the amount of steel required, and the EDC of this joint could also satisfy the requirements of seismic codes from various countries.

Seismic response of built-up double-I column in steel moment resisting frame using welded external diaphragm plate

  • Tabebordbar, Amir;Dehghan, Seyed Mehdi;Fathi, Farshid;Najafgholipour, Mohammad Amir
    • Steel and Composite Structures
    • /
    • 제41권5호
    • /
    • pp.747-759
    • /
    • 2021
  • Built-up Double-I (BD-I) columns have been commonly used for mid-rise steel-frame structures in Iran. These columns consist of two hot rolled IPE sections which are connected by two cover plates and fillet welds. Until 2017, BD-I columns were employed in intermediate moment resisting frames (MRF) using welded flange plate (WFP) connections. To evaluate the seismic behavior of the connections, four samples were made and tested based on cyclic loading according to AISC 341-16. It was concluded that typical samples cannot satisfy the seismic provisions related to intermediate MRFs. In contrast, the proposed connections retrofitted with two-part external diaphragms were able to satisfy not only the seismic requirements related to intermediate MRFs but also those related to special MRFs according to AISC. The numerical modeling of these samples was performed using ABAQUS finite element software. This study compared the hysteresis moment-rotation curves, plastic strains, and behavior modes in both experimental samples and numerical models.

축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도 (Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017%)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제21권1호
    • /
    • pp.1-8
    • /
    • 2017
  • 형상비(M/VD, shear span-depth ratio)가 4.5인 축소모형의 원형기둥 실험체 3개를 제작하였다. 철근콘크리트 기둥 실험체의 단면은 원형이고 중공단면으로 제작되었다. 철근콘크리트 기둥 실험체의 단면 지름은 400 mm, 중공 지름은 200 mm이다. 일정한 축력 하에서 반복하중을 가력하는 준정적 실험을 수행하였다. 실험체의 주요변수는 횡방향철근비이다. 모든 실험체의 횡방향 나선철근 체적비는 소성힌지 구간에서 0.302~0.604%의 값을 갖는다. 이 값은 도로교설계기준에서 요구하는 최소 심부구속철근 요구량의 45.9~91.8%에 해당하며, 이는 내진 설계가 되지 않은 기존 교각이나 내진설계개념으로 설계되는 교각을 나타낸다. 본 연구의 최종목적은 실험적 기초자료의 제공과 함께 성능단계별 균열거동, 하중-변위 이력곡선, 에너지 소산 능력, 등가점성감쇠비, 잔류변형, 유효강성 등 내진성능의 정량적 수치와 경향을 제공하기 위한 것이다. 본 논문에서는 실험결과를 통해 분석된 실험변수에 따른 실험결과들을 공칭강도, 비선형 모멘트-곡률 해석 결과, AASHTO LRFD 및 도로교설계기준(한계상태설계법)과 같은 기준들과 비교하였다.

풍하중을 고려한 확률론적 운동특성 평가기법 개발에 관한 연구 (Development of a Probabilistic Approach to Predict Motion Characteristics of a Ship under Wind Loads)

  • 이상의
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.315-323
    • /
    • 2023
  • 지난 10년간, 복원력 상실로 인한 어선의 해양 사고는 지속해 증가하고 있다. 특히, 소형선박 사고의 대부분은 갑작스러운 바람이 주요 원인으로 지목되었다. 바람에 의한 소형선박의 갑작스러운 사고를 예방하기 위해서는 체계적인 분석기법 개발이 필요한 실정이다. 본 연구는 확률론적 극값 추정법을 기반으로 선박의 운동성능에 바람이 미치는 영향을 평가하는 데 그 목적이 있다. 이를 위해 운동 해석, 극값 추출, 운동 특성 분석 등의 연구를 수행하였다. 운동 해석은 Sea State 5의 파랑에서 파도, 파도와 균일 바람, 파도와 NPD풍속 모델 바람이 작용하는 3가지 조건을 적용하였다. 극값 추출은 Hysteresis 필터링 및 Peak-Valley 필터링 기법을 적용하였다. 추출된 극값을 이용하여 적합도 시험(Goodness of Fit Test)을 4가지 분포함수에 대해 수행하여 극값을 가장 잘 표현하는 최적의 분포함수를 선정하였다. 어선의 운동 특성은 3가지 주기 운동에 대하여 (Heave, Roll, Pitch)에 평가 후, 결과를 비교하였다. 선박의 운동성능 해석은 상용 솔버인 ANSYS-AQWA를 이용하였다.