• Title/Summary/Keyword: Load Effect

Search Result 6,253, Processing Time 0.047 seconds

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Effect of Diaphragm Ratio by Load Condition and Behavior in Composite Structures of Sandwich System (샌드위치식 복합구조체에서 하중조건.거동특성에 따른 격벽간격비의 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.297-302
    • /
    • 2000
  • This paper presents the effect of diaphragm spacing ratio(depth to span) on behavior and capacity of composite steel-concrete structures of sandwich system. Numerical analysis has been performed variety diaphragm ratio, behavior and load condition. As a results of this study, in case of shear behavior and concentrated load, the capacity of structure such as yielding and ultimate load improve according to diaphragm ratio because of concrete confining effect by steel plate and stress redistribution by diaphragm. But in case of bending behavior or uniform load, it proved that diaphragm ratio don't influence on behavior and capacity of composite structures of sandwich system.

  • PDF

Experimental study on the thermal charateristics according to the pre-load and cooling condition for the high speed spindle with grease lubrication (그리스윤활 고속주축의 예압과 냉각조건에 따른 열특성의 실험적 고찰)

  • 최대봉;김수태;정성훈;김용기
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.41-46
    • /
    • 2003
  • The important problem in high speed spindles is to reduce and minimize the thermal effect by motor and bail bearings. Thermal characteristics according to the bearing pre-load and cooling condition are studied for the test spindl with grease lubrication and high frequency motor. Bearing and motor we main heat generation, and heat generation by ball bearings as a function of load, viscosity and gyroscopic moment effect are considered. Temperature distribution and thermal displacement according to the speed of spindle are measured by thermocouple and gap sensor. The results show that the fitting pre-load and cooling temperature are very effective to minimize the thermal effect by motor an ball bearings.

  • PDF

Effect of axial load on flexural behaviour of cyclically loaded RC columns

  • Au, F.T.K.;Bai, Z.Z.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.261-284
    • /
    • 2006
  • The flexural behaviour of symmetrically reinforced concrete (RC) columns cast of normal- and high-strength concrete under both monotonic and cyclic loading is studied based on an analytical procedure, which employs the actual stress-strain curves and takes into account the stress-path dependence of concrete and steel reinforcement. The analysis is particularly extended into the post-peak stage with large inelastic deformation at various applied axial load level. The effect of axial load on their complete flexural behaviour is then identified based on the results obtained. The axial load is found to have fairly large effect on the flexural behaviour of RC columns under both monotonic and cyclic loading. Such effects are discussed through examination of various aspects including the moment-curvature relationship, moment capacity, flexural ductility, variation of neutral axis depth and steel stress.

The Load Leveling Effect of Light Control System (조명제어시스템의 부하관리 효과)

  • Han, Seung-Ho;Kim, Seong-Cheol;Choi, Kyoung-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.285-287
    • /
    • 2008
  • This paper represents the electric power load leveling effect of the Light Control System(LCS). The lighting of typical mid-large commercial buildings is the major factor of daytime electric power consumption. Since the national peak power demand occurs in between 11:00 and 16:00, the dimming control of light can contribute the decrease of the power demand We will discuss the load leveling effect of dimming control with LCS.

  • PDF

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.

Effect of superstructure-abutment continuity on live load distribution in integral abutment bridge girders

  • Dicleli, Murat;Erhan, Semih
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.635-662
    • /
    • 2010
  • In this study, the effect of superstructure-abutment continuity on the distribution of live load effects among the girders of integral abutment bridges (IABs) is investigated. For this purpose, two and three dimensional finite element models of several single-span, symmetrical integral abutment and simply supported (jointed) bridges (SSBs) are built and analyzed. In the analyses, the effect of various superstructure properties such as span length, number of design lanes, girder size and spacing as well as slab thickness are considered. The results from the analyses of two and three dimensional finite element models are then used to calculate the live load distribution factors (LLDFs) for the girders of IABs and SSBs as a function of the above mentioned parameters. LLDFs for the girders are also calculated using the AASHTO formulae developed for SSBs. Comparison of the analyses results revealed that the superstructure-abutment continuity in IABs produces a better distribution of live load effects among the girders compared to SSBs. The continuity effects become more predominant for short span IABs. Furthermore, AASHTO live load distribution formulae developed for SSBs lead to conservative estimates of live load girder moments and shears for short-span IABs.

J-R Curve Characterization by Load Ratio Analysis and Unloading Compliance Method for SA508 C-3 steel (SA508-3재의 제하컴플라이언스법과 하중비해석을 이용한 파괴저항곡선 평가)

  • 임만배;차귀준;윤한기;안원기
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.65-75
    • /
    • 1998
  • The fracture resistance curve is one of most important and design techniques employed in nuclear pressure vessel structures. This study is to evaluate the J-R curve characteristics for the SA508C-3 by the unloading compliance method and load rato analysis. The effect of strain aging for the exponential correlation of the J-R curve in this metal are investigated at room temperature, 20$0^{\circ}C$ and 30$0^{\circ}C$. The load ratio analysis method can evaluate the J-R curve by using the simple tension load-displacement curve only without the repeat of the unloading and loading. Therefore, the analysis by the proposed load ratio method has a merit, in comparison with the unloading compliance method, which can measure the crack length without the precision measurement equipment.

  • PDF

IMPROVED EARTHQUAKE RESISTANT DESIGN OF MULTISTORY BUILDING FRAMES (고층건물 내진설계기법의 개선)

  • Lee, Dong-Guen-;Lee, Seok-Youn-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.72-78
    • /
    • 1991
  • An improved procedure for earthquake resistant design of multistory building structures is proposed in this study. The effect of gravity load on seismic response of structures is evaluated through nonlinear dynamic analyses of a single story example structure. The presence of gravity load tends to initiate plastic hinge formation in earlier stage of a strong earthquake. However, the effect of gravity load seems to disapper as ground motion is getting stronger. And one of shortcomings in current earthquake resistant codes is overestimation of gravity load effects when earthquake load is applied at the same time so that it may leads to less inelastic deformation or structural damage in upper stories, and inelastic deformation is increased in lower stories. Based on these observation, an improved procedure for earthquake resistant design is derived by reducing the factor for gravity load and inceasing that for seismic load. Structures designed by the proposed design procedure turned out to have increased safety and stability against strong earthquakes.

  • PDF

Optimal Generation Expansion Planning with Load Management Effect (부하관리 효과를 고려한 최적 전원개발계획 수립에 관한 연구)

  • Park, Jong-Jin;Chung, Do-Young;Kim, Joon-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.96-99
    • /
    • 1990
  • Recently, electric energy consumption pattern shows very high peak load with low load factor. This Load pattern have made electric utilities be interested in Load Management, many studies are reported. But most of these studies are concerned with Rate - Load shape relation, a few of these are concerned with generating cost reduction. In this study, the effect of Load Management is incorporated to establish optimal Generation Expansion Planning. Using avoided cost, optimal generation expansion planning is achieved to make maximum avoided cost of Electric utility. Dynamic programming technique is used to solve this algorithm.

  • PDF