• Title/Summary/Keyword: Load Effect

Search Result 6,253, Processing Time 0.032 seconds

Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging (폐색정도를 고려한 개단말뚝의 지지력 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

Effect Reinforced Ground using Geocell (지오셀을 적용한 지반의 보강효과에 관한연구)

  • Shin, Eun-Chul;Kim, Sung-Hwan;Oh, Young-In
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.782-791
    • /
    • 2009
  • This study was carried out the laboratory tests and field plate load test in order to evaluate the reinforcement effect of geocell for road construction. The geocell-reinforced subgrade shows the increment of cohesion and friction angle with comprison of non-reinforced subgrade. In addition, the field plate load test was performed on the geocell-reinforced subgrade to estimate the bearing capacity of soil. The direct shear test was conducted with utilizing a large-scale shear box to evaluate the internal soil friction angle with geocell reinforcement. The number of cells in the geocell system is varied to investigate the effect of soil reinforcement. The theoretical bearing capacity of subgrade soil with and without geocell reinforcement was estimated by using the soil internal friction angle. The field plate load tests were also conducted to estimate the bearing capacity with geocell reinforcement. It is found out that the bearing capacity of geocell-reinforced subgrade gives 2 times higher value than that of unreinforced subgrade soil. In the future, the reinforcement effect of the geocell rigidity and load-balancing effect of the geocells should be evaluated.

  • PDF

Buckling Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Journal of Korean Port Research
    • /
    • v.14 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • This stability of a plate structure is very crucial problem which results in wrinkle and buckling. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear buckling load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

  • PDF

Bucking Load Analysis of Spot-Welded Structures (점용접된 구조물의 좌굴하중해석)

  • 이현철;심재준;안성찬;한근조
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.265-272
    • /
    • 1999
  • This stability of a plate structure is very crucial problem which results in wrinkle and bucking. In this study, the effect of the pattern of spot-welding points of the two rectangular plates on the compressive and shear bucking load is studied with respect to the thickness, aspect ratio of plates and number of welding spots. Buckling coefficient of the plate not welded was compared with that of two plates with various thickness to extract the effect of thickness. The effect of number of welding spots are studied in two directions, longitudinal and transverse directions. The conclusions obtained were that the reinforcement effect was maximized when the aspect ratio was close to 1.75 at compressive load condition and that the effect of number of welding spots in transverse direction was larger than that in longitudinal direction at shearing load condition.

The Roles of Information Load and Information Quality in Online Apparel Shopping (온라인 의류쇼핑에서 정보부하와 정보품질의 역할)

  • Park, Min-Jung
    • Journal of the Korean Home Economics Association
    • /
    • v.47 no.9
    • /
    • pp.101-110
    • /
    • 2009
  • The purpose of this study was to examine the effect for information load on perceived information quality and website quality, and the relationships among perceived information quality, website quality and behavioral intentions in online apparel shopping contexts. The information load theory provided the theoretical framework for this study. The research strategy employed an online experimentation using an apparel mock website. The total of 647 responses were used for data analyses. The model of the study was tested by MANOVA and SEM. The results of MANOVA revealed the effect of information load on perceived information quality and website quality. The medium level of information load was perceived as having more positive information quality and website quality as compared to the low or high level of information load. The findings of SEM revealed the positive effect of information quality on website quailty, the positive effect of website quality on WOM and willingness to pay more, and the negative effect of website quailty on willingness to switch. Online apparel retailers and website designers need to manage information quantity and quality by understanding the importance of information load.

The Effect of Dynamic Load, Inflation Pressure and Number of Passes of Tire on Soil Compaction under the Tire (타이어의 동하중, 공기압 및 통과횟수가 토양다짐에 미치는 영향)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • This study was carried out to investigate experimentally the effect of three factors(dynamic load, inflation pressure and number of passes of tire) on soil compaction under the tire. The experiment were conducted with a 6.00R14 radial-ply tire for sandy loam soil using soil bin system. To evaluate the effect of three factors on soil compaction under the tire, the sinkage. density and volume of soil under the tire were measured fur the three levels of dynamic load(1.17kN, 2.35kN and 3.53kN), for the three levels of tire inflation pressure(103.42kPa, 206.84kPa and 413.67kPa), and for three different number of passes(1, 3 and 5). The results of this study can be summarized as follows : 1. As dynamic load, inflation pressure and number of passes of the tire increased, soil sinkage and density increased. and volume of soil decreased. Thus increase in dynamic load, inflation pressure and number of passes of the tire would increase soil compaction. 2. The effect of tire inflation pressure on sinkage. density and volume of soil under the tire was relatively less than that of the dynamic load. Therefore, it was concluded that dynamic load was more important factor affecting soil compaction in comparison to the inflation pressure of tire. 3. The effect of three different factors on sinkage, density and volume of soil decreased as the soil depth increase. Consequently, it was fecund that soil compaction at a shallow depth in soil was larger than that at deep place in soil.

A Study on the Reduction effect of Peak Cooling Load on the Sunshade effect of BIPV System (BIPV 시스템의 차양 효과에 따른 피크 냉방부하 절감효과에 관한 연구)

  • Lee, Chung-Sik;Lee, Eung-Jik;Lee, Chul-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.14-20
    • /
    • 2008
  • As the number of buildings that use the transparent permeation materials as the outer wall is on the increase, the coming amount of the light rays is a lot, and thus the increase in the cooling load and the radiant heat of high temperature may cause the residents to discomfort. In order to reduce such influences, this paper analyzed the installation effects of the sunshade BIPV. The inner temperature of the room installed the sunshade BIPV or otherwise was measured, and compared and analyzed the effects of reducing the cooling load by the incoming light rays. The sample space of the third floor of S university installed the sunshade BIPV has two rooms on the same conditions, and for five sunny days selected in August, the researcher measured the air temperature and the temperature of the fittings with closing the windows to minimize the movement of air without operating the coolers. The maximum cooling load measured by the incoming light rays in the room where the sunshade BIPV was not installed was examined as 459.13kcal/h. It can be understood as the effect of reducing the cooling load according to the incoming rays of the room with sunshade BIPV. Even though the effect of cooling load reduction is not so great in a room, the total reduction in cooling room for the 32 rooms installed the sunshade BIPV was estimated to be 40442.27kcal/day, which will be able to bring the maximum reduction effect of 17.1kW in energy and reduce the investment cost owing to the reduction in cooling load when initially designing the building.

How do Verbal Information and Cognitive Load adjust the Anchoring Effect? (언어정보와 인지부하는 기준점설정효과를 어떻게 조정하는가?)

  • Lee, Hyun-Kyung;Kim, Gwi-Gon
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.323-329
    • /
    • 2012
  • This study examines the anchoring effect and the adjustment process of two variables(verbal information, cognition load) with snack products. In the results of this study, 1) we found the anchoring effect because the respondents predicted more the number of real units(goraebap) on the packaging painted 25 units than 5 ones. 2) We confirmed the moderating effect of verbal information. The difference of the number of real units predicted between the two packaging was decreased when the visual information was in company with verbal information. And 3) the moderating effect of cognitive load appeared because the more cognitive load was, the less the difference of the number of real units predicted was. This study has shown that we can reduce the errors and biases by adjusting the information frame or the cognitive load. This research provides a theoretical-practical implications to the marketing staffs like packaging designers as well as scholars to study consumer psychology.

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

An analysis of torsional flange-upsetting process based on slab method (슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석)

  • Jae-Hoon Park
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.