• Title/Summary/Keyword: Load Effect

Search Result 6,253, Processing Time 0.028 seconds

Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium

  • Ma, Zhi;Yun, Chung-Bang;Shen, Yan-Bin;Yu, Feng;Wan, Hua-Ping;Luo, Yao-Zhi
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.507-524
    • /
    • 2019
  • A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.

A Study on the Effect of a Series of Trucks on Dynamic load Factor (연속 차량하중에 의한 충격하중의 영향에 관한 연구)

  • 황의성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.105-110
    • /
    • 1992
  • This study deals with the effect of a series of moving trucks on the Dynamic Load Factor (DLF). The DLF is calculated by investigating the load effect of moving trucks. Therefore, analytical models for frocks, bridge, and road profiles were developed and dynamic structural analysis computer program were developed. Then the DLFs are calculated as a ratio of maximum dynamic load effect and maximum static load effect. Trucks used in this study are 5 axle semi tractor-trailer with the weight of 36 and 54 ton. Simply supported prestressed concrete box girder bridges with 20 and 40m span length are selected. From the results of the DLF for various headway distances, they show a very scattered and relatively high values of the DLF in case of a 20m span length bridge. For a 40m span length bridge, the results show less scattered and small increase of the DLF compared to a 20m span length bridge.

  • PDF

The Effect of Refining Load on the Paper Properties (고해부하가 종이의 물성에 미치는 영향)

  • 김용식;원종명
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.1
    • /
    • pp.38-44
    • /
    • 2001
  • The effects of refining load on the paper properties were investigated. HwBKP, SwBKP and SwUKP were refined with PFI mill at the load of 3.33 N/mm and 6.00 N/mm. Higher Scott bond was obtained at the higher refining load for three pulp used in this study. However any changes in the light scattering coefficient with the change of refining load were not observed. Although the effect of refining load on the formation index for SwUKP was not observed, higher refining load gave the better formation for HwBKP and SwBKP. The fiber mass and fiber crowding factor were not affected by the refining load. Higher apparent density and tensile index were obtained with the higher refining load. However, the higher refining load did not improve the tensile index at the same apparent density. The tear index was decreased with the increase of refining load.

  • PDF

Effects of Working Memory Load on Negative Facial Emotion Processing: an ERP study (작업기억 부담이 부적 얼굴정서 처리에 미치는 영향: ERP 연구)

  • Park, Taejin;Kim, Junghee
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.1
    • /
    • pp.39-59
    • /
    • 2018
  • To elucidate the effect of working memory (WM) load on negative facial emotion processing, we examined ERP components (P1 and N170) elicited by fearful and neutral expressions each of which was presented during 0-back (low-WM load) or 2-back (high-WM load) tasks. During N-back tasks, visual objects were presented one by one as targets and each of facial expressions was presented as a passively observed stimulus during intervals between targets. Behavioral results showed more accurate and fast responses at low-WM load condition compared to high-WM load condition. Analysis of mean amplitudes of P1 on the occipital region showed significant WM load effect (high-WM load > low-WM load) but showed nonsignificant facial emotion effect. Analysis of mean amplitudes of N170 on the posterior occipito-temporal region showed significant overall facial emotion effect (fearful > neutral), but, in detail, significant facial emotion effect was observed only at low-WM load condition on the left hemisphere, but was observed at high-WM load condition as well as low-WM load condition on the right hemisphere. To summarize, facial emotion effect observed by N170 amplitudes was modulated by WM load only on the left hemisphere. These results show that early emotional processing of negative facial expression could be eliminated or reduced by high load of WM on the left hemisphere, but could not be eliminated by high load on the right hemisphere, and suggest right hemispheric lateralization of negative facial emotion processing.

Improvement to Crack Retardation Models Using ″Interactive Zone Concept″

  • Lee, Ouk-Sub;Chen, Zhi-Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.72-77
    • /
    • 2002
  • The load interaction effect can be best illustrated by the phenomenon of overload retardation. Some prediction methods for retardation are reviewed and the problems discussed in the present paper. The so-called under-load effect much of the retardation disappears if a very low level minimum stress follows the overload, is also of importance for a prediction model to work properly under random load spectrum. The concept of Interactive Zone (IZ) fully considering reversed plasticity during unloading was discussed. This IZ concept can be combined with existing models to derive some improved models that can naturally take account of the under-load effect. Some simulations by IZ improved models for test under complex load sequences including multiple overloads and both over/under loads are compared with test results. It is seen that the improvement by IZ concept greatly enhanced the ability of existing models to accommodate complex load interaction effects.

Buckling behavior of composite cylindrical shells with cutout considering geometric imperfection

  • Heidari-Rarani, M.;Kharratzadeh, M.
    • Steel and Composite Structures
    • /
    • v.30 no.4
    • /
    • pp.305-313
    • /
    • 2019
  • Creating different cutout shapes in order to make doors and windows, reduce the structural weight or implement various mechanisms increases the likelihood of buckling in thin-walled structures. In this study, the effect of cutout shape and geometric imperfection (GI) is simultaneously investigated on the critical buckling load and knock-down factor (KDF) of composite cylindrical shells. The GI is modeled using single perturbation load approach (SPLA). First, in order to assess the finite element model, the critical buckling load of a composite shell without cutout obtained by SPLA is compared with the experimental results available in the literature. Then, the effect of different shapes of cutout such as circular, elliptic and square, and perturbation load imperfection (PLI) is investigated on the buckling behavior of cylindrical shells. Results show that the critical buckling load of a shell without cutout decreases by increasing the PLI, whereas increasing the PLI does not have a great impact on the critical buckling load in the presence of cutout imperfection. Increasing the cutout area reduces the effect of the PLI, which results in an increase in the KDF.

The Effect of Rate-of-Return Regulation on Public Utility Pricing

  • Kim, Pang-Ryong
    • ETRI Journal
    • /
    • v.16 no.3
    • /
    • pp.11-26
    • /
    • 1994
  • In Korea, the price schedule for local telephone combines two-part tariffs and peak-load pricing subject to rate-of-return (RoR) regulation. Although the effect of RoR regulation on two-part tariffs or peak-load pricing has been separately analyzed by many authors in some detail, the behaviour of regulated firm under combined two-part and peak-load pricing has not been studied until now. This paper examines the effect of regulation on the rate structure and welfare under combined two-part and peak-load pricing.

  • PDF

Effects of Cognitive Load on the Division of Labor: Working Memory and the Joint Simon Effect (인지 부하가 분업에 미치는 영향: 작업기억과 결합 사이먼 효과)

  • Kim, Hyojeong;Lee, Jaeyoon;Yi, Do-Joon
    • Science of Emotion and Sensibility
    • /
    • v.25 no.2
    • /
    • pp.11-22
    • /
    • 2022
  • As social beings, we need to understand others' actions as quickly and accurately as possible. Action understanding can occur at many levels. We sometimes grasp others' intentions unintentionally. Other times, however, we have to expend effort to draw inferences about their goals. In the context of joint action, the joint Simon effect demonstrates that actors are influenced by the unintended representation of a co-actor's actions. This effect has been described as quasi-automatic, but it is unclear if the effect is automatic enough to be immune to cognitive load. Thus, we asked participants to complete a joint Simon task with or without a concurrent working memory task. One group of participants maintained a single digit in their mind during working memory load blocks (low-load group), while the other group maintained five digits (high-load group). As a result, the low-load group showed a joint Simon effect both during no-load and low-load blocks. In contrast, the high-load group had no joint Simon effect during either no-load or high-load blocks. These results suggest that the joint Simon effect is not an automatic phenomenon given that it requires cognitive resources. Actors in a joint task may represent a co-actor's actions in their task set, but only when cognitive resources are available.

Determination of equivalent blasting load considering millisecond delay effect

  • Song, Zhan-Ping;Li, Shi-Hao;Wang, Jun-Bao;Sun, Zhi-Yuan;Liu, Jing;Chang, Yu-Zhen
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.745-754
    • /
    • 2018
  • In the analysis of the effects of rock tunnel blasting vibration on adjacent existing buildings, the model of simplified equivalent load produces higher calculation result of vibration, due to the lack of consideration of the millisecond delay effect. This paper, based on the static force equivalence principle of blasting load, proposes a new determination method of equivalent load of blasting vibration. The proposed method, based on the elastic-static force equivalence principle of stress wave, equals the blasting loads of several single blastholes in the same section of millisecond blasting to the triangle blasting load curve of the exploded equivalent elastic boundary surface. According to the attenuation law of stress wave, the attenuated equivalent triangle blasting load curve of the equivalent elastic boundary is applied on the tunnel excavation contour surface, obtaining the final applied equivalent load. Taking the millisecond delay time of different sections into account, the time-history curve of equivalent load of the whole section applied on the tunnel excavation contour surface can be obtained. Based on Sailing Tunnel with small spacing on Sanmenxia-Xichuan Expressway, an analysis on the blasting vibration response of the later and early stages of the tunnel construction is carried out through numerical simulation using the proposed equivalent load model considering millisecond delay effect and the simplified equivalent triangle load curve model respectively. The analysis of the numerical results comparing with the field monitoring ones shows that the calculation results obtained from the proposed equivalent load model are closer to the measured ones and more feasible.

The Mechanism Study of Gait on a Load and Gender Difference

  • Ryew, Checheong;Hyun, Seunghyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2021
  • Gait kinematics and kinetics have a similar tendency between men and women, yet it remains unclear how walking while carrying a load affects the gait mechanism. Twenty adults walked with preferred velocity on level ground of 20 m relative to change of a load carriage (no load, 15%, 30% of the body weights) aimed to observe gait mechanism. We measured gait posture using the three-dimensional image analysis and ground reaction force system during stance phase on left foot. In main effect of gender difference, men showed increased displacement of center of gravity (COG) compared to women, and it showed more extended joint angle of hip and knee in sagittal plane. In main effect of a load difference, knee joint showed more flexed postuel relative to increase of load carriage. In main effect of load difference on the kinetic variables, medial-lateral force, anterior-posterior force (1st breaking, 2nd propulsive), vertical force, center of pressure (COP) area, leg stiffness, and whole body stiffness showed more increased values relative to increase of load carriage. Also, men showed more increased COP area compared to women. Interaction showed in the 1st anterior-posterior force, and as a result of one-way variance analysis, it was found that a load main effect had a greater influence on the increase in the magnitude of the braking force than the gender. The data in this study explains that women require little kinematic alteration compared to men, while men in more stiff posture accommodate an added load compared to women during gait. Additionally, it suggests that dynamic stability is maintained by adopting different gait strategies relative to gender and load difference.