• Title/Summary/Keyword: Load Distribution Ratio

Search Result 392, Processing Time 0.024 seconds

Study on operation characteristics of the cold air distribution systems with an ice storage tank (빙축열을 이용한 저온공조시스템 운전 특성 연구)

  • 염한길;박병규;고득용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.301-312
    • /
    • 1999
  • Experiments were carried out to evaluate performance of the cold air distribution systems with an ice storage tank in test room. Cold air distribution systems provide primary air for comfort conditioning or process cooling at coil discharge temperatures$4^{\circ}C$ to$11^{\circ}C$. The application of a cold air distribution system allows for the downsizing of air distribution equipment and central plant equipment when ice storage tank is used. The benefit of a cold air distribution system include a decrease in the floor-to-floor height, increase floor space, reduced building capital costs, reduced energy use and demand. The use of cold air distribution can result in the most cost effective system and is currently being implemented world wise as the new standard in air conditioning systems. In this study, the cold air distribution system is compared with the general ice storage system. Under the same cooling load conditions, experimental results show that the supply air volume of cold air distribution system decrease 38%, and decrease 45% flow rate of brine for the general ice storage system.

  • PDF

Seismic Performance Evaluation of Steel Moment Frame Factory Building with Slender Braces (세장한 가새가 사용된 철골모멘트골조 공장시설물의 내진 성능평가)

  • Kim, Dong Yeon;Cho, Jae Chul;Hwang, Sunwoo;Kim, Taejin;Kim, Jong Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.33-43
    • /
    • 2018
  • 'Seismic Performance Evaluation Method for Existing Buildings (2013)' developed in accordance with the overseas guidelines ASCE 41 - 06 is the most widely used procedure among domestic seismic performance evaluation guidelines in Korea. However, unlike ASCE 41 - 06, it stipulates that the final performance should be derived as the gravity load distribution ratio of the lateral force resistance system in the guideline. Therefore, in the case of a dual steel structure system with slender braces, where the internal moment frame is mostly responsible for the gravity load, the evaluation of slender braces based on gravity load distribution ratio is difficult to be achieved. In this research, we propose an objective evaluation process for such system by evaluating seismic performance for large-scale factory facilities as an example.

A Study on Optimal Control of Slab Cooling Storage Considering Stochastic Properties of Internal Heat Generation (내부발열의 확률적 성상을 고려한 슬래브축냉의 최적제어)

  • Jung, Jae-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.6
    • /
    • pp.313-320
    • /
    • 2015
  • In this paper, a method to obtain the probability distribution of room temperature and cooling load is presented, when the internal heat generation is applied to the system as a disturbance in the air conditioning system with slab cooling storage. The probability distribution of room temperature and the cooling load due to the disturbance were examined in one room of an office building. When considering only the electric power consumption as a probability component, it was found that the effect on room temperature and cooling load is small, because the probability component of the measured electric power consumption in the building is small. On the other hand, when considering the stochastic fluctuations of electric power consumption together with the heat generated by human bodies, the mean value of the cooling load was about 2,300 W and the ratio of the standard deviations was 19% (10 o'clock in second day). It was revealed that the stochastic effects of internal heat generation acting on the air conditioning system with slab cooling storage are not small.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine Generator (초소형 가스 터빈 제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 이용복;곽현덕;김창호;장건희
    • Tribology and Lubricants
    • /
    • v.17 no.6
    • /
    • pp.467-475
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce an excitation force due to narrow pressure distribution.

Feasibility Study on Design of Thrust Bearing for Micro Gas Turbine/Generator (초소형 가스 터빈/제너레이터용 스러스트 베어링의 설계 및 타당성에 관한 연구)

  • 곽현덕;이용복;김창호;장건희
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.273-281
    • /
    • 2001
  • Feasibility study of gas-lubricated bearing in micro gas turbine was performed. Based on Reynolds equation, finite difference method with coupled boundary was developed to analyze bearing characteristics, such as load-carrying capacity, mass flow rates and stiffness. By the bearing force and mass flow rates analysis with the variation of supply pressure, bearing clearance and capillary radius, acceptable range of design parameters were suggested in terms of load capacity and stiffness of bearings. Additionally, coupled boundary effect on pressure distribution was investigated and it is stated that coupling could reduce all excitation force due to narrow pressure distribution.

  • PDF

Thermal buckling and stability of laminated plates under non uniform temperature distribution

  • Widad Ibraheem Majeed;Ibtehal Abbas Sadiq
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.503-511
    • /
    • 2023
  • Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter "m", whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of temperature reduces plate frequency.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

Planning for Construction and Expanding of Distribution Substation Considering Contingency (상정사고를 고려한 배전용 변전소 신,증설 계획 수립)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.303-308
    • /
    • 2001
  • This paper presents algorithm to plan construction and expanding of substation considering contingency accidents by proposing utilization factor according to configuration of substation bank system. In this paper, firstly, proper sphere of supply area by each district which could be standardized with respect to its supply capacity is established under assumption of long term load forecasting. Secondly, goal of utilization ratio based on configuration of substation bank was set to keep reliability by remaining sound bank when it happen to one bank accidents. Finally, it is set up for optimal construction and expanding of substation considering economy and reliability simultaneously about substation to exceed these ratio. To verify proposed algorithm, at first, after adopting a part of Kangnam area in Seoul as area for testing, it is divided into several regions for this area according to power branches of power utility. Secondly, by deriving correlation factor between load demand and economic indicators in these region respectively, the regional load forecasting was performed with economic growth and city plan scenario. Finally, based on the predicted load demand by region and land use data which is identified from air-photographic, the load demand by district was predicted. Also, planning for substation considering contingency is formulated to expand taking into account computing utilization factor which is based on configuration of substation bank respectively.

  • PDF

Characteristics of a Coupled Gas Lubricated Bearing for a Scaled-Up Micro Gas Turbine

  • Lee, Yong Bok;Kwak, Hyunduck;Kim, Chang Ho;Jang, Gun Hee
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication far Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution, load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated for Micro Gas Turbine bearings. The coupled effect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF

Coupled Boundary Effects on a Gas Lubricated Bearing far a Scaled-Up Micro Gas Turbine

  • Hyunduck Kwak;Lee, Yong-Bok;Kim, Chang-Ho;Gunhee Jang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.243-249
    • /
    • 2000
  • In case of the limitation of Deep RIE fabrication for Micro Gas Turbine, bearing aspect ratio is limited in very small value. The characteristics such as pressure distribution load capacity and non-linearity of a short bearing of L/D=0.083 and a conventional bearing of L/D=1.0 with coupled boundary effects are investigated far Micro Gas Tlubine bearings. The coupled efffect was analyzed by mass conservation at coupled end area. The results, increasing load capacity and non-linearity due to the coupled effect of thrust and journal bearing, are obtained and the selection of journal bearing type is discussed.

  • PDF