• Title/Summary/Keyword: Load Distribution Ratio

Search Result 392, Processing Time 0.024 seconds

Study on High Aspect Ratio Wing and Optimization of Substructure Location by Using EDISON OPtimal Triangle membrane(Linear and Non-linear analysis) - Static (EDISON OPT 평면요소를 이용한 고 세장비 날개에 대한 선형, 비선형 비교연구 및 추가구조물 위치 최적화)

  • Lee, Da-Woon;Hong, Yoou-Pyo;Shin, Sang-Joon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.262-267
    • /
    • 2016
  • In this paper, to design Human Powered Aircraft(HPAC) with high aspect ratio wing which behave with large displacement under lift distribution causing a failure itself, then steel wire has been designed to prevent its failure. unit load method is used to calculate reaction force on wire and Optimal Triangle(OPT) membrane is employed to analyze its main wing spar with large displacement. EDISON CSD solver, linear static analysis and co-rotational nonlinear static anaysis both using OPT membrane produce behaviors of beam for each case of wire location about main wing spar, and aerodynamic coefficient also, by using aerodynamic analysis tool.

  • PDF

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

Influence of the Diagonal Reinforcement around opening on the Structural Behavior of Reinforced Concrete Continuous Deep Beams (개구부 경사보강철근이 철근콘크리트 연속 깊은 보의 역학적 거동에 미치는 영향)

  • Yang, Keun-Hyeok;Sim, Jea-Il
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.382-385
    • /
    • 2006
  • Objective of this study is to understand the diagonal reinforcement around openings on the control of diagonal crack, load distribution, and ultimate strength of reinforced concrete two-span continuous deep beams. Test results of four specimens showed that the strength lost by openings might be completed when diagonal reinforcement ratio was above 0.0014.

  • PDF

Flash Temperature of the Cam-Roller Contacting Surface in a Marine Diesel Engine (박용 디젤기관 캠-롤러 접촉부의 표면 상승 온도)

  • 김남식;김민남;구영필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.200-208
    • /
    • 2002
  • The flash temperature of the cam-roller contacting surface for a marine diesel engine was analysed numerically. The elastohydrodynamic lubrication pressure and film thickness were adopted to get more accurate frictional coefficient, heat flux and temperature distribution. The maximum flash temperature was increased with both the increasing slip ratio of the contacting surfaces and increasing external load. This study tells that the temperature analysis is an indispensable procedure in designing elastohydrodynamic lubrication contacts on which the slip occurs.

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

Transverse seismic response of continuous steel-concrete composite bridges exhibiting dual load path

  • Tubaldi, E.;Barbato, M.;Dall'Asta, A.
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.21-41
    • /
    • 2010
  • Multi-span steel-concrete composite (SCC) bridges are very sensitive to earthquake loading. Extensive damage may occur not only in the substructures (piers), which are expected to yield, but also in the other components (e.g., deck, abutments) involved in carrying the seismic loads. Current seismic codes allow the design of regular bridges by means of linear elastic analysis based on inelastic design spectra. In bridges with superstructure transverse motion restrained at the abutments, a dual load path behavior is observed. The sequential yielding of the piers can lead to a substantial change in the stiffness distribution. Thus, force distributions and displacement demand can significantly differ from linear elastic analysis predictions. The objectives of this study are assessing the influence of piers-deck stiffness ratio and of soil-structure interaction effects on the seismic behavior of continuous SCC bridges with dual load path, and evaluating the suitability of linear elastic analysis in predicting the actual seismic behavior of these bridges. Parametric analysis results are presented and discussed for a common bridge typology. The response dependence on the parameters is studied by nonlinear multi-record incremental dynamic analysis (IDA). Comparisons are made with linear time history analysis results. The results presented suggest that simplified linear elastic analysis based on inelastic design spectra could produce very inaccurate estimates of the structural behavior of SCC bridges with dual load path.

EFFECT OF CANTILEVER LENGTH AND LOAD ON STRESS DISTRIBUTION OF FIXED IMPLANT-SUPPORTED PROSTHESES (캔틸레버의 길이와 하중이 하악 임플랜트지지 고정성 보철물의 응력 분산에 미치는 영향)

  • Tae, Yen-Sup;Lee, Wha-Young;Cho, Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.4
    • /
    • pp.615-643
    • /
    • 1998
  • The purpose of this study was to evaluate the effect of cantilever length, load, and implant number on the stress distribution of implant supported fixed prosthesis. In the replica of an edentulous human mandible, four or five implants were placed and spaced evenly between the mental foramina and symmetrical gold alloy cast superstructures with cantilever were fabricated. Strain gauges were placed in buccal and lingual side of implants. 9, 15, 21kg of loads at varying cantilever lengths were applied to the occlusal surface of fixed prostheses. The strains were recorded from each gauge and principal stresses were calculated The results were as follows : 1. Increasing the length of the cantilever increased the stresses on the bone supporting implants. and the ratio of increase became high as increasing the load. 2. In the model with four implants, the highest compressive stress was measured on lingual side of the first implants nearest loading point and the highest tensile stress was measured on buccal side of the second implants. 3. In the model with five implants, the highest compressive stress was measured on lingual side of the first implants nearest loading point. And the highest tensile stress was measured on buccal side of the second implants, and lingual side of the third implants. 4. There was no significant change of the magnitude of stress on the most distal imp]ant of non cantilevered side as increasing the cantilever length or load. 5. In general, the superstructure supported by five implants reduced the stress and was less affected by cantilever length compared to the support provided by four implants.

  • PDF

Strength Evaluation of Steel Box Beam-to-Column Connections with Axial Load (축방향 하중을 받는 강재 상자단면 보-기둥 접합부의 강도평가)

  • Hwang, Won Sup;Park, Moon Su;Kim, Young Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.117-127
    • /
    • 2007
  • In this study, we evaluate the strength of steel box beam-to-column connections subjected to axial loads in steel frame piers. The T-connection strength was reduced due to the column axial force in the two-story pier structure. To examine this phenomenon, non-linear FEM analysis was carried out and the analytical procedure was verified by comparing it with experimental results. To clarify the effect of the axial force and major design parameters in connection with strength, influence of panel zone width-thickness ratio, sectional area, and axial force was investigated using FEM analysis. Also, the theoretical strength equations were suggested by stress distribution of panel zone. The strength of the T-connection was compared with one of the one-story pier structure connections. As a result, the strength evaluation equations are proposed in consideration of the panel zone width-thickness ratio and sectional area ratio for the T-connections.

Mechanical behaviour of composite columns composed of RAC-filled square steel tube and profile steel under eccentric compression loads

  • Ma, Hui;Xi, Jiacheng;Zhao, Yaoli;Dong, Jikun
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.103-120
    • /
    • 2021
  • This research examines the eccentric compression performance of composite columns composed of recycled aggregate concrete (RAC)-filled square steel tube and profile steel. A total of 17 specimens on the composite columns with different recycled coarse aggregate (RCA) replacement percentage, RAC strength, width to thickness ratio of square steel tube, profile steel ratio, eccentricity and slenderness ratio were subjected to eccentric compression tests. The failure process and characteristic of specimens under eccentric compression loading were observed in detail. The load-lateral deflection curves, load-train curves and strain distribution on the cross section of the composite columns were also obtained and described on the basis of test data. Results corroborate that the failure characteristics and modes of the specimens with different design parameters were basically similar under eccentric compression loads. The compression side of square steel tube yields first, followed by the compression side of profile steel. Finally, the RAC in the columns was crushed and the apparent local bulging of square steel tube was also observed, which meant that the composite column was damaged and failed. The composite columns under eccentric compression loading suffered from typical bending failure. Moreover, the eccentric bearing capacity and deformation of the specimens decreased as the RCA replacement percentage and width to thickness ratio of square steel tube increased, respectively. Slenderness ratio and eccentricity had a significantly adverse effect on the eccentric compression performance of composite columns. But overall, the composite columns generally had high-bearing capacity and good deformation. Meanwhile, the mechanism of the composite columns under eccentric compression loads was also analysed in detail, and the calculation formulas on the eccentric compression capacity of composite columns were proposed via the limit equilibrium analysis method. The calculation results of the eccentric compression capacity of columns are consistent with the test results, which verify the validity of the formulas, and the conclusions can serve as references for the engineering application of this kind of composite columns.

Seismic Response Control Performance Evaluation of Retractable-Roof Spatial Structure With Variation of TMD Mass (TMD의 질량 변화에 따른 개폐식 대공간 구조물의 지진응답 제어성능 분석)

  • Lee, Young-Rak;Ro, Ho-Sung;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2019
  • In the precedent study, the retractable-roof spatial structure was selected as the analytical model and a tuned mass damper (TMD) was installed to control the dynamic response for the earthquake loads. Also, it is analyzed that the installation location of TMD in the analytical model and the optimal number of installations. A single TMD mass installed in the analytical model was set up 1% of the mass of the whole structure, and the optimum installation location was derived according to the number of change. As a result, it was verified that most effective to install eight TMDs regardless of opening or closing. Thus, in this study, eight TMDs were installed in the retractable-roof spatial structure and the optimum mass ratio was inquired while reducing a single TMD. In addition, the optimum mass distribution ratio was identified by redistributing the TMD masses differently depending on the installation position, using the mass ratio of vibration control being the most effective for seismic load. From the analysis results, as it is possible to confirm the optimum mass distribution ratio according to the optimum mass ratio and installation location of the TMD in the the retractable-roof spatial structure, it can be used as a reference in the TMD design for large space structure.