• Title/Summary/Keyword: Load Carrying Performance

Search Result 310, Processing Time 0.028 seconds

An Experimental Study on the Performance of Compression-Type Anchor for CFRP Tendons (CFRP 긴장재용 압착형 정착장치의 정착성능에 관한 실험적 연구)

  • Jung, Woo-Tai;Lee, Seung-Joo;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.611-618
    • /
    • 2008
  • CFRP (carbon fiber reinforced polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Since CFRP tendons are vulnerable to transverse pressure and stress concentration, the conventional anchorage system used for steel tendons can create an unreliable load carrying capacity and may result in a premature failure. Therefore, it is necessary to develop the anchorage system that is well suited for CFRP tendons. There are many types of anchorage systems for CFRP tendons, which can be classified into three types: wedge-type anchorage, bond-type anchorage, and compression-type anchorage. This paper deals with the compression-type anchorage system manufactured through swaging technology. Based on the previous test results performed by the authors, the dimension of anchorage sleeve, the use and non-use of the insert, and the compression pressure on the sleeve have been selected as the major parameters affecting the performance of the compression-type anchorage. Some anchorage sleeves have been tapered to reduce the stress concentration. Test results revealed that the performance of the anchorage system depends mainly on the dimension and the compression pressure. It has been verified that the tapered sleeve can effectively reduce the stress concentration.

Evaluation of Structural Performance of Reinforced Concrete Beams using Hybrid Retrofitting with Groove and Embedding FRP Rod and CFRP Sheet (표면요철 매입형 FRP봉과 CFRP시트를 복합 보강한 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Ha, Young-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.41-49
    • /
    • 2014
  • In this study, experimental research was carried out to evaluate the structural performance of the reinforced concrete beam using hybrid retrofitting with two materials (groove and embedding FRP rod, CFRP sheet) in existing reinforced concrete buildings. Seven reinforced concrete beams, retrofitted groove and embedding FRP rod (NER series) and groove and embedding FRP rod with CFRP sheet (NERL series), and standard specimen (NBS) were constructed and tested under monotonic loading. Design parameters of test specimens are the amount of groove and embedding FRP rod and lapping CFRP sheet. Test results showed that the maximum load carrying capacity of specimens with groove and embedding FRP rod and groove and embedding FRP rod with CFRP sheet (NERL series) were increased the by 12~46% and 22~77% respectively in comparison with the standard specimen NBS. Test specimens NER series were failed with the adhesion slip and concrete cover separation. And test specimens NERL series were failed with the adhesion slip due to the confining effect of lapping CFRP sheet.

The Inelastic Behavior of High Strength Reinforced Concrete Tall Walls (고강도 철근콘크리트 고층형 내력벽의 비탄성 거동에 관한 실험 연구)

  • 윤현도;정학영;최창식;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.139-148
    • /
    • 1995
  • The test results from three one fourth scale models using high strength Reinforced Concrete $f_x=704\;kg/cm^2,\;f_y=5.830\;kg/cm^2$ are presented. Such specimens are considered to represent the critical 3 storics of 60-story tall building of a structural wall system in area of high seismicity respectively. They are tested under inplane vertical and horizontal loading. The main varlable is the level of axial stress. The amounts of vertical and horizontal reinforcement are identical for the three walls testcd. The cross-section of all walls is barbell shape. The aspectratio($h_w/I_w$) of test specimen is 1.8. The aim of the study is to investigate the effects of levels of applied axial stresses on the inelastic behavior of high-strength R /C tall walls. Experimental results of high strength R /C tall walls subjected to axial load and simulated sels rnic loading show that it is possible to insure a ductlle dominant performance by promotmg flex ural yielding of vertical reinforcement and that axial stresses within $O.21f_x$ causes an increase in horizontal load-carrying capacity, initial secant st~ffness characteristics, but an decrease in displacement ductility. energy dissipation index and work damage index of high strength K /C tall walls

Connection Performance of Steel Moment Frame with Out-of-Plane Beam Skew (면외방향 어긋난 보를 갖는 철골모멘트골조의 접합부 성능)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.84-91
    • /
    • 2022
  • This study investigated the behavior of out-of-plane skewed moment connections that were designed as IMFs, as per the Korean standards. A total of 14 finite element models were constructed with the consideration of two types (single- and double-sided connections) and four levels of skew angle (0°, 10°, 20°, and 30°). The results indicated that the skewed connections considered in this study met the acceptance criteria for IMFs given by the codes. However, the load-carrying capacities of skewed connections were decreased as the skew angle increased. For the connection with a skew angle of 30°, the peak load was noted to be 13% less and the energy dissipation capacity could be 26% less than that of non-skewed connection. In addition, because of the skewed nature, the stress distribution in the skewed beam flange near the connection was asymmetric and the stresses were concentrated on the beam inner flange. Column twisting induced by the skewed configuration was very small and negligible in the beam and column combination considered in this study.

Structural Performance Evaluation of Reinforced Concrete Frame and Shear Wall with Various Hoop Ratios of Boundary Column (철근콘크리트 프레임 및 전단벽체의 경계기둥 띠철근비 변화에 따른 구조성능 평가)

  • 신종학;하기주;전찬목
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.303-311
    • /
    • 1998
  • Ten reinforced concrete rigid frames and infilled shear wall frames were tested under both vertical and cyclic loadings. Experiments were carried out to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. under load reversals. All the specimens were modeledin one-third scale size. Based on the test results reported in this study, the follwing conclusions can be made. For the rigid frame type and the fully rigid babel type shear wall specimens, the hysteresis diagrams indicate that the degradations of their strength were developed slowly beyond maximum carrying capacity. It was shown that when the hoop reinforcement ratio became higher, the energy dissipation capacity became larger and the failure mode became ductile. The specimens designed by the less hoop reinforcement for the fully rigid babel type shear wall, were mainly failed due to diagonal crack in comparison with the specimens designed by the larger hoop reinforcement ratio. Maximum horizontal resisting moment capacity of speciment designed by the fully rigid babel shear wall were increased by 5.47~7.95 times in comparison with the rigid frame type.

Development of Autonomous Cable Monitoring System of Bridge based on IoT and Domain Knowledge (IoT 및 도메인 지식 기반 교량 케이블 모니터링 자동화 시스템 구축 연구)

  • Jiyoung Min;Young-Soo Park;Tae Rim Park;Yoonseob Kil;Seung-Seop Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.66-73
    • /
    • 2024
  • Stay-cable is one of the most important load carrying members in cable-stayed bridges. Monitoring structural integrity of stay-cables is crucial for evaluating the structural condition of the cable-stayed bridge. For stay-cables, tension and damping ratio are estimated based on modal properties as a measure of structural integrity. Since the monitoring system continuously measures the vibration for the long-term period, data acquisition systems should be stable and power-efficiency as the hardware system. In addition, massive signals from the data acquisition systems are continuously generated, so that automated analysis system should be indispensable. In order to fulfill these purpose simultaneously, this study presents an autonomous cable monitoring system based on domain-knowledge using IoT for continuous cable monitoring systems of cable-stayed bridges. An IoT system was developed to provide effective and power-efficient data acquisition and on-board processing capability for Edge-computing. Automated peak-picking algorithm using domain knowledge was embedded to the IoT system in order to analyze massive data from continuous monitoring automatically and reliably. To evaluate its operational performance in real fields, the developed autonomous monitoring system has been installed on a cable-stayed bridge in Korea. The operational performance are confirmed and validated by comparing with the existing system in terms of data transmission rates, accuracy and efficiency of tension estimation.

Dynamic-size Multi-hop Clustering Mechanism based on the Distance in Sensor Networks (센서 네트워크에서의 거리에 따른 동적 크기 다중홉 클러스터링 방법)

  • Ahn, Sang-Hyun;Lim, Yu-Jin
    • The KIPS Transactions:PartC
    • /
    • v.14C no.6
    • /
    • pp.519-524
    • /
    • 2007
  • One of the most important issues on the sensor network with resource limited sensor nodes is prolonging the network lifetime by effectively utilizing the limited node energy. The most representative mechanism to achieve a long lived sensor network is the clustering mechanism which can be further classified into the single hop mode and the multi hop mode. The single hop mode requires that all sensor nodes in a cluster communicate directly with the cluster head(CH) via single hop md, in the multi hop mode, sensor nodes communicate with the CH with the help of other Intermediate nodes. One of the most critical factors that impact on the performance of the existing multi hop clustering mechanism is the cluster size and, without the assumption on the uniform node distribution, finding out the best cluster size is intractable. Since sensor nodes in a real sensor network are distributed non uniformly, the fixed size mechanism may not work best for real sensor networks. Therefore, in this paper, we propose a new dynamic size multi hop clustering mechanism in which the cluster size is determined according to the distance from the sink to relieve the traffic passing through the CHs near the sink. We show that our proposed scheme outperforms the existing fixed size clustering mechanisms by carrying out numerical analysis and simulations.

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Performance Evaluation of RC Slabs Strengthened by Stiff Type PolyUrea (경질형 폴리우레아로 보강된 RC 슬래브의 성능 평가)

  • Park, Jeong Cheon;Lee, Sang Won;Kim, Sung Bae;Kim, Jang-Ho Jay
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.457-464
    • /
    • 2011
  • An experimental study was performed to evaluate the possibility of using stiff type PolyUrea(PU) on RC slab as a strengthening material. Stiff type PU(STPU) was sprayed on the bottom surface of the slab specimens, which were then attached with CFRP or GFRP sheets. Also the evaluation of the bond capacity, the single most influential parameter on strengthening of RC structures, was carried out the flexural capacity evaluation test results showed that the load carrying capacity of the PU specimen was greater and less than the unstrengthened and FRP sheet attached specimens, respectively. The STPU specimens showed a ductile flexural behavior in the plastic displacement range. With respect to bond capacity, the bond strength of all of the specimen exceeded the code required bond strength of 1.5 MPa. Also, the STPU sprayed specimen without using epoxy resin did not peel off when the tensile grip was applied for testing. The stability of the PU bond failure indicate a good bond strength of PU when applied to concrete.

Flexural Behaviors of GFRP Rebars Reinforced Concrete Beam under Accelerated Aging Environments (GFRP Rebar 보강 콘크리트 보의 급속노화환경에서의 휨 거동에 관한 연구)

  • Park, Yeon-Ho;Choi, Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • The use of fiber-reinforced polymer (FRP) reinforcing bars in concrete structures has been increased as an alternative of steel reinforcement which has shown greater vulnerability to corrosion problem. However, the long-term performance of concrete members with FRP reinforcement is still questioned in comparison to the used of steel reinforcement. This study presents the results of an experimental study on the long-term behaviors of GFRP (glass fiber reinforced polymer) bar reinforced concrete beams after exposed to accelerated aging in an environmental chamber with temperature of $46^{\circ}C$ ($115^{\circ}F$) and 80% of relative humidity up to 300 days. The objectives of this research was to compare strength degradation and change of ductility between GFRP reinforced concrete beams and steel reinforcement beams after accelerated aging. Two types (wrapped and sand-coated surface) of GFRP bars and steel were reinforced. in concrete beams. Test results show that the failure modes of GFRP bar reinforced concrete beams are very similar with traditional RC beams, and the change of load-carrying capacity of steel reinforcing concrete beam is greater than that of GFRP bar reinforcing concrete beam under the accelerated aging. Test result also shows that the use of GFRP reinforcing in concrete could be introduced more brittle failure than that of steel reinforcing for practical application. The deformability factor up to compression failures indicates no significant variation before and after exposure of accelerated aging.