• Title/Summary/Keyword: Load Applied Angle

Search Result 358, Processing Time 0.032 seconds

Evaluation of Clamping Forces according to Length-to-diameter Ratios and Preserved Thread Lengths of High Strength Bolts (고력볼트의 길이-직경비 및 여유나사길이에 따른 조임력 평가 연구)

  • Kim, Sang Seup;Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.259-268
    • /
    • 2000
  • In the friction-type joints the external applied load is transmitted by frictional force acting on the contact area of the plates fastened by the high strength bolts. This frictional force is proportional to the product of the bolt clamping force and slip coefficient of the faying surface. But the bolt clamping force is dependent on many factors when the turn-of-nut method is used. The preserved thread length and length-to-diameter ratios are one of the major factors governing the bolt clamping force. This paper presents the correct method of high strength bolt tightening through the experiment on the mechanical properties on sets of high strength bolts in accordance with preserved thread length and length-to-diameter ratios.

  • PDF

Effect of Friction on the Hysteresis of the Thrust Forces Acting on Auto Leveling Devices in Vehicle Head Lamps (헤드 램프 빛의 각도 자동 조절 장치에 작용하는 추력의 히스테리시스에 대한 마찰의 영향)

  • Baek, Hong;Kim, Jae-Hoon;Nam, Jin-Sik;Park, Sang-Shin
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.369-375
    • /
    • 2019
  • This paper presents a new method on how to calculate the thrust forces acting on an auto-leveling device in headlamps for passenger vehicles. The leveling device is used to lower the angle of lights when a load in the trunk of the vehicle lifts it. In the process of the headlamp design, it is imperative to predict the external forces so that the designers can decide whether to proceed or not. The device is composed of three pivot joints with no reaction moment, a plate that holds the lamp, and a leveling motor that changes rotation to linear motion. In this study, force balance, moment balance, and geometric compatibility are applied to the leveling device system so that a nonlinear system of equations can be derived; the multi-dimensional Newton-Raphson algorithm is then used to solve these. A sensitivity analysis is carried out to verify which design variables affect the system the most: the mass of the lamp and the height between the pivot and leveling device affect the thrust forces the most. Then, considering the friction forces between the moving parts, the hysteresis of the forces are derived. An experimental apparatus, designed and developed in this study, is used to verify the exactness of the derived equations. The results from experiments coincide well with the calculated results. The friction hysteresis, in particular, proves this upon analysis.

Analysis of Contact Singular Stresses with Relief Notch by Using Dynamic Photoelasticity(II) (동적 광탄성실험에 의한 응력이완 노치부근에서의 접촉특이응력 해석 (2))

  • Lee, Eok-Seop;Hwang, Si-Won;Nah, Gyeong-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2097-2107
    • /
    • 1996
  • The dynamic photoelastic technique had been utilized to investigate the possibillity of relieving the large local singular stresses induced at the corner of a right- angle- indenter. The indenter compressed a semi-infinite body dynamically with an impact load applied on the top of the indenter. The effects of the geometric changes of the indenter in terms of the diameter (d) and the location (1) of the stress relieving notch on the behavior of the dynamic contact stresses were investigated. The influence of stress relieving notches positioned along the edge of the semi-infinite body on the dynamic contact stresses were also studied by changing the diameter (D) and the location (L) of the notch. A multi-speak-high speed camera with twelve sparks were used to take photographs of full field dynamic isochromatic fringe patterns. The contact singular stresses were found to be released significantly by the stress relief notches both along the indenter and the edge of the semi-infinite body. The optimal position and geometry of the stress relieving notches were obtained with the aid of limited experimental results.

Multi-Disciplinary Design Optimization of a Wing using Parametric Modeling (파라미터 모델링을 이용한 항공기 날개의 다분야 설계최적화)

  • Kim, Young-Sang;Lee, Na-Ri;Joh, Chang-Yeol;Park, Chan-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.229-237
    • /
    • 2008
  • In this research, a MDO(multi-disciplinary design optimization) framework, which integrates aerodynamic and structural analysis to design an aircraft wing, is constructed. Whole optimization process is automated by a parametric-modeling approach. A CFD mesh is generated automatically from parametric modeling of CATIA and Gridgen followed by automatic flow analysis using Fluent. Finite element mesh is generated automatically by parametric method of MSC.Patran PCL. Aerodynamic load is transferred to Finite element model by the volume spline method. RSM(Response Surface Method) is applied for optimization, which helps to achieve global optimum. As the design problem to test the current MDO framework, a wing weight minimization with constraints of lift-drag ratio and deflection of the wing is selected. Aspect ratio, taper ratio and sweepback angle are defined as design variables. The optimization result demonstrates the successful construction of the MDO framework.

A Mathematical Approach to Allocate the Contributions by Applying UPFCs to Transmission System Usage

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.158-163
    • /
    • 2005
  • Competitive electricity markets necessitate equitable methods for allocating transmission usage in order to set transmission usage charges and congestion charges in an unbiased and an open-accessed basis. So in competitive markets it is usually necessary to trace the contribution of each participant to line usage, congestion charges and transmission losses, and then to calculate charges based on these contributions. A UPFC offers flexible power system control, and has the powerful advantage of providing, simultaneously and independently, real-time control of voltage, impedance and phase angle, which are the basic power system parameters on which sys-tem performance depends. Therefore, UPFC can be used efficiently and flexibly to optimize line utilization and increase system capability and to enhance transmission stability and dampen system oscillations. In this paper, a mathematical approach to allocate the contributions of system users and UPFCs to transmission system usage is presented. The paper uses a dc-based load flow modeling of UPFC-inserted transmission lines in which the injection model of the UPFC is used. The relationships presented in the paper showed modified distribution factors that modeled impact of utilizing UPFCs on line flows and system usage. The derived relationships show how bus voltage angles are attributed to each of changes in generation, injections of UPFC, and changes in admittance matrix caused by inserting UPFCs in lines. The relationships derived are applied to two test systems. The results illustrate how transmission usage would be affected when UPFC is utilized. The relationships derived can be adopted for the purpose of allocating usage and payments to users of transmission network and owners of UPFCs used in the network. The relationships can be modified or extended for other control devices.

  • PDF

License Plate Recognition System based on Normal CCTV (일반 CCTV 기반 차량 번호판 인식 시스템)

  • Woong, Jang Ji;Man, Park Goo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.89-96
    • /
    • 2017
  • This Paper proposes a vehicle detection system and a license plate recognition system from CCTV images installed on public roads. Since the environment of this system acquires the image in the general road environment, the stable condition applied to the existing vehicle entry / exit system is not given, and the input image is distorted and the resolution is irregular. At the same time, the viewing angle of the input image is more wide, so that the computation load is high and the recognition accuracy of the plate is likely to be lowered. In this paper, we propose an improved method to detect and recognize a license plate without a separate input control devices. The vehicle and license plate were detected based on the HOG feature descriptor, and the characters inside the license plate were recognized using the k-NN algorithm. Experimental environment was set up for the roads more than 45m away from the CCTV, Experiments were carried out on an entry vehicle capable of visually identifying license plate and Experimental results show good results of the proposed method.

Effect of ferrule on the fracture resistance of mandibular premolars with prefabricated posts and cores

  • Kim, Ae-Ra;Lim, Hyun-Pil;Yang, Hong-So;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • PURPOSE. This study evaluated fracture resistance with regard to ferrule lengths and post reinforcement on endodontically treated mandibular premolars incorporating a prefabricated post and resin core. MATERIALS AND METHODS. One hundred extracted mandibular premolars were randomly divided into 5 groups (n=20): intact teeth (NR); endodontically treated teeth (ETT) without post (NP); ETT restored with a prefabricated post with ferrule lengths of either 0 mm (F0), 1 mm (F1), or 2 mm (F2). Prepared teeth were restored with metal crowns. A thermal cycling test was performed for 1,000 cycles. Loading was applied at an angle of 135 degrees to the axis of the tooth using a universal testing machine with a crosshead speed of 2.54 mm/min. Fracture loads were analyzed by one-way ANOVA and Tukey HSD test using a statistical program (${\alpha}=.05$). RESULTS. There were statistical differences in fracture loads among groups (P<.001). The fracture load of F2 ($237.7{\pm}83.4$) was significantly higher than those of NP ($155.6{\pm}74.3N$), F0 ($98.8{\pm}43.3N$), and F1 ($152.8{\pm}78.5N$) (P=.011, P<.001, and P=.008, respectively). CONCLUSION. Fracture resistance of ETT depends on the length of the ferrule, as shown by the significantly increased fracture resistance in the 2 mm ferrule group (F2) compared to the groups with shorter ferrule lengths (F0, F1) and without post (NP).

In-Plane Collision Analysis of Perforated Steel Plates (면내 충돌에 의한 유공 강판의 거동 해석)

  • Kang, Dong-Baek;Lee, Ju-Won;Na, Won-Bae;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.65-71
    • /
    • 2008
  • In many cases, open-type plate breakwaters use plates with multiple holes; the holes serve as energy dissipaters and weight reducers. Because of the multi-holes configuration, stress concentration should be considered during the design process. Among several design loading conditions, the loads from a possible collision with a man-made vessel or other unexpected events many damage a multi-perforated steel plate. In that case, the structural behavior of a multi-perforated steel plate is quite significant, and is not well understood. This study presents a collision analysis for a multi-perforated steel plate. First, four different perforation topologies (three with circles and one with squares) were selected to investigate the effect of different hole shapes on the structural response. Second, the wave force at a specific site was calculated and loaded onto a steel plate as a static load. The static stresses were used for reference values. Third, two rigid body impacters (cubical & cylindrical) were applied to the steel plates to investigate the transient stress responses. In addition, two different impacting angles ($45^{\circ}\;&\;90^{\circ}$) were selected to investigate the angle effect. From the collision analysis, the significance of the transient stresses was emphasized.

Evaluation of Rocking Mechanism for Embedded Shallow Foundation via Horizontal Slow Cyclic Tests (수평반복하중 실험을 이용한 근입된 얕은 기초의 회전거동 메커니즘 평가)

  • Ko, Kil-Wan;Ha, Jeong-Gon;Park, Heon-Joon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.47-59
    • /
    • 2016
  • Rocking behavior of shallow foundation reduces the superstructure load during earthquake. However, because of deficiency of understanding of rocking mechanism and soil permanent deformation, it has not been applied to real construction. In this study, slow cyclic tests were conducted for embedded shallow foundations with various slenderness ratio via centrifuge tests. From the variation of earth pressure 'soil rounding surface' phenomenon which makes maximum overturning moment equal to ultimate moment capacity was observed. Rocking and sliding behavior mechanism was evaluated. Also, nonlinear behavior and energy dissipation increase as rotation angle increases. And ultimate moment capacity of embedded foundation is larger than that of surface foundation. Finally, adequate ultimate moment capacity can be suggested for seismic design through this study.

Variable-Speed Prime Mover Driving Three-Phase Self-Excited Induction Generator with Static VAR Compensator Voltage Regulation-Part H : Simulation and Experimental Results-

  • Ahmed, Tarek;Nagai, Schinichro;Soshin, Koji;Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.10-15
    • /
    • 2003
  • This paper presents the digital computer performance evaluations of the three-phase self-excited induction generator (SEIG) driven by the variable speed prime mover such as the wind turbine using the nodal admittance approach steady-state frequency domain analysis with the experimental results. The three-phase SEIG setup is implemented for small-scale rural renewable energy utilizations. The experimental performance results give a good agreement with those ones obtained from the digital computer simulation. Furthermore, a feedback closed-loop voltage regulation of the three-phase SEIG as a power conditioner which is driven by a variable speed prime mover employing the static VAR compensator (SVC) circuit composed of the thyristor phase controlled reactor (TCR) and the thyristor switched capacitor(TSC) is designed and considered herein for the wind-turbine driven the power conditioner. To validate the effectiveness of the SVC-based voltage regulator of the terminal voltage of the three-phase SEIG, an inductive load parameter disturbances in stand-alone are applied and characterized in this paper. In the stand-alone power utilization system, the terminal voltage response and thyristor triggering angle response of the TCR are plotted graphically. The simulation and the experimental results prove the effectiveness and validity of the proposed SVC which is controlled by the Pl controller in terms of fast response and high performances of the three-phase SEIG driven directly by the rural renewable energy utilization like a variable-speed prime mover.