• 제목/요약/키워드: LoVo cell

검색결과 17건 처리시간 0.026초

Ginsenoside-Rp1-induced apolipoprotein A-1 expression in the LoVo human colon cancer cell line

  • Kim, Mi-Yeon;Yoo, Byong Chul;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제38권4호
    • /
    • pp.251-255
    • /
    • 2014
  • Background: Ginsenoside Rp1 (G-Rp1) is a novel ginsenoside derived from ginsenoside Rk1. This compound was reported to have anticancer, anti-platelet, and anti-inflammatory activities. In this study, we examined the molecular target of the antiproliferative and proapoptotic activities of G-Rp1. Methods: To examine the effects of G-Rp1, cell proliferation assays, propidium iodine staining, proteomic analysis by two-dimensional gel electrophoresis, immunoblotting analysis, and a knockdown strategy were used. Results: G-Rp1 dose-dependently suppressed the proliferation of colorectal cancer LoVo cells and increased their apoptosis. G-Rp1 markedly upregulated the protein level of apolipoprotein (Apo)-A1 in LoVo, SNU-407, DLD-1, SNU-638, AGS, KPL-4, and SK-BR-3 cells. The knockdown of Apo-A1 by its small-interfering RNA increased the levels of cleaved poly(ADP-ribose) polymerase and p53 and diminished the proliferation of LoVo cells. Conclusion: These results suggest that G-Rp1 may act as an anticancer agent by strongly inhibiting cell proliferation and enhancing apoptosis through upregulation of Apo-A1.

In-vitro와 Ex-vivo MTT Assay를 통한 직장암의 방사선치료 감수성 예측 가능성 검증 (The Use of MTT Assay, In Vitro and Ex Vivo, to Predict the Radiosensitivity of Colorectal Cancer)

  • 김지은;김미숙;강창모;김종일;신혜경;최철원;서영석;지영훈
    • Radiation Oncology Journal
    • /
    • 제26권3호
    • /
    • pp.166-172
    • /
    • 2008
  • 목 적: 암환자의 방사선 치료 전 방사선에 대한 감수성을 미리 측정할 수 있다면 임상적으로 많은 도움이 될 것이다. 본 연구는 전 임상 실험을 통하여 MTT assay가 세포집락 측정기법과 비교해서 방사선 감수성을 예측할 수 있고, 직장암 환자의 조직에 사용할 수 있는지 가능성을 확인하고자 하였다. 대상 및 방법: 대장암 세포 주인 HCT-8, LoVo, CT-26, WiDr을 이용하여 세포집락 측정기법을 통해 세포생존곡선 및 2 Gy에서의 세포생존확률(SF2)을 구하였다. 세포 주 자체를 대상으로 MTT assay를 시행하는 실험(in vitro) 및 환자의 암 조직과 같은 상태를 만들기 위하여, 누드 마우스에 세포 주를 주입하여 암 조직을 형성한 후 in vitro와 같은 방식으로 MTT assay를 시행(ex vivo)하였다. 이 두 실험에 대한 흡광도 값에 따른 저해율(inhibition rate, %)을 구하였다. 결 과: $SF_2$ 및 세포생존곡선에 따르면 CT-26 및 LoVo가 HCT-8, WiDr에 비해 방사선에 민감하였다(p<0.05). In vitro MTT assay 결과 WiDr, HCT-8, LoVo와 CT-26의 방사선 저해율이 각각 17.3%, 21%, 30%, 56.5%를 나타내었다. 또한 ex vivo MTT assay의 저해율은 HCT-8, WiDr, LoVo와 CT-26에서 각각 23.5%, 26%, 38%, 53%를 나타내었다. 통계적인 차이를 감안하였을 때 세포생존곡선을 통해 얻은 방사선 감수성의 결과와 동일한 순서를 가졌다. 결 론: 4개의 세포 주의 방사선의 감수성의 순서가 세포집락 측정기법 및 in vitro와 ex vivo MTT assay 결과에서 거의 일치함을 보였다. 이는 직장암 환자에서 MTT assay를 통해 방사선 감수성을 예측할 수 있는 가능성을 제시하였다.

Apoptotic Potential and Chemical Composition of Jordanian Propolis Extract against Different Cancer Cell Lines

  • Abutaha, Nael
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권6호
    • /
    • pp.893-902
    • /
    • 2020
  • Propolis is a resinous substance that is collected by Apis mellifera from plant sources and is used in traditional medicine. To study the phytochemical constituents and apoptotic potential of Jordanian propolis extract against different cancer cell lines, propolis was extracted using methanol, hexane, and ethyl acetate and was fractionated using chromatographic methods. Cytotoxicity was assessed using MTT and LDH assays. The apoptotic potential was investigated using florescence microscopy, multicaspase assay, Annexin-V and dead cell assay, and cell cycle assay. The phytochemical constituents were analyzed using GC-MS. The methanol extract of propolis exhibited cytotoxic potential against all cell lines tested. The IC50 values of the methanol extract were 47.4, 77.8, 91.2, and 145.0 ㎍/ml for HepG2, LoVo, MDAMB231, and MCF7 cell lines, respectively. The IC50 values of the F1 fraction were 31.6 (MDAMB231), 38.9 (HepG2), 36.7 (LoVo) and 75.5 (MCF7) ㎍/ml. On further purification using thin-layer chromatography, the IC50 values of the F1-3 fraction were found to be 84.31(HepG2), 79.2 (MCF7), 70.4 (LoVo), and 68.9 (MDAMB231) ㎍/ml, respectively. The anticancer potential of the F1 fraction was confirmed through the induction of apoptosis and cell cycle arrest at the G0/G1 phase. The GC-MS analysis of the F1 fraction revealed the presence of 3-methyl-4-isopropylphenol (29.44%) as a major constituent. These findings indicate the potential of propolis extract as a cancer therapy. However, further investigation is required to assess the acute and subacute toxicity of the most active fraction.

Beta-asarone Induces LoVo Colon Cancer Cell Apoptosis by Up-regulation of Caspases through a Mitochondrial Pathway in vitro and in vivo

  • Zou, Xi;Liu, Shen-Lin;Zhou, Jin-Yong;Wu, Jian;Ling, Bo-Fan;Wang, Rui-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권10호
    • /
    • pp.5291-5298
    • /
    • 2012
  • Beta-asarone is one of the main bioactive constituents in traditional Chinese medicine Acorus calamu. Previous studies have shown that it has antifungal and anthelmintic activities. However, little is known about its anticancer effects. This study aimed to determine inhibitory effects on LoVo colon cancer cell proliferation and to clarify the underlying mechanisms in vitro and in vivo. Dose-response and time-course anti-proliferation effects were examined by MTT assay. Our results demonstrated that LoVo cell viability showed dose- and time-dependence on ${\beta}$-asarone. We further assessed anti-proliferation effects as ${\beta}$-asarone-induced apoptosis by annexin V-fluorescein isothiocyanate/propidium iodide assay usinga flow cytometer and observed characteristic nuclear fragmentation and chromatin condensation of apoptosis by microscopy. Moreover, we found the apoptosis to be induced through the mitochondrial/caspase pathway by decreasing mitochondrial membrane potential (MMP) and reducing the Bcl-2-to-Bax ratio, in addition to activating the caspase-9 and caspase-3 cascades. Additionally, the apoptosis could be inhibited by a pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). When nude mice bearing LoVo tumor xenografts were treated with ${\beta}$-asarone, tumor volumes were reduced and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays of excised tissue also demonstrated apoptotic changes. Taken together, these findings for the first time provide evidence that ${\beta}$-asarone can suppress the growth of colon cancer and the induced apoptosis is possibly mediated through mitochondria/caspase pathways.

Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

  • Yoo, Byong Chul;Yeo, Seung-Gu
    • Radiation Oncology Journal
    • /
    • 제35권3호
    • /
    • pp.281-288
    • /
    • 2017
  • Purpose: The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. Materials and Methods: CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. Results: CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. Conclusion: CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins.

Surface expression of TTYH2 is attenuated by direct interaction with β-COP

  • Ryu, Jiwon;Kim, Dong-Gyu;Lee, Young-Sun;Bae, Yeonju;Kim, Ajung;Park, Nammi;Hwang, Eun Mi;Park, Jae-Yong
    • BMB Reports
    • /
    • 제52권7호
    • /
    • pp.445-450
    • /
    • 2019
  • TTYH2 is a calcium-activated, inwardly rectifying anion channel that has been shown to be related to renal cancer and colon cancer. Based on the topological prediction, TTYH2 protein has five transmembrane domains with the extracellular N-terminus and the cytoplasmic C-terminus. In the present study, we identified a vesicle transport protein, ${\beta}$-COP, as a novel specific binding partner of TTYH2 by yeast two-hybrid screening using a human brain cDNA library with the C-terminal region of TTYH2 (TTYH2-C) as a bait. Using in vitro and in vivo binding assays, we confirmed the protein-protein interactions between TTYH2 and ${\beta}$-COP. We also found that the surface expression and activity of TTYH2 were decreased by co-expression with ${\beta}$-COP in the heterologous expression system. In addition, ${\beta}$-COP associated with TTYH2 in a native condition at a human colon cancer cell line, LoVo cells. The over-expression of ${\beta}$-COP in the LoVo cells led to a dramatic decrease in the surface expression and activity of endogenous TTYH2. Collectively, these data suggested that ${\beta}$-COP plays a critical role in the trafficking of the TTYH2 channel to the plasma membrane.

Gomisin G Suppresses the Growth of Colon Cancer Cells by Attenuation of AKT Phosphorylation and Arrest of Cell Cycle Progression

  • Maharjan, Sony;Park, Byoung Kwon;Lee, Su In;Lim, Yoongho;Lee, Keunwook;Lee, Younghee;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • 제27권2호
    • /
    • pp.210-215
    • /
    • 2019
  • Colorectal cancer is one of the leading causes of cancer related death due to a poor prognosis. In this study, we investigated the effect of Gomisin G on colon cancer growth and examined the underlying mechanism of action. We found that Gomisin G significantly suppressed the viability and colony formation of LoVo cells. Gomisin G reduced the phosphorylation level of AKT implying that Gomisin G suppressed the PI3K-AKT signaling pathway. Gomisin G also induced apoptosis shown by Annexin V staining and an increased level of cleaved poly-ADP ribose polymerase (PARP) and Caspase-3 proteins. Furthermore, Gomisin G remarkably triggered the accumulation of cells at the sub-G1 phase which represents apoptotic cells. In addition, the level of cyclin D1 and phosphorylated retinoblastoma tumor suppressor protein (Rb) was also reduced by the treatment with Gomisin G thus curtailing cell cycle progression. These findings show the suppressive effect of Gomisin G by inhibiting proliferation and inducing apoptosis in LoVo cells. Taken together, these results suggest Gomisin G could be developed as a potential therapeutic compound against colon cancer.

대장암 세포에서 EGFR 저해제 Nimotuzumab의 방사선 병합 효과 (Combination Effect of Nimotuzumab with Radiation in Colorectal Cancer Cells)

  • 신혜경;김미숙;정재훈
    • Radiation Oncology Journal
    • /
    • 제28권3호
    • /
    • pp.147-154
    • /
    • 2010
  • 목 적: 대장암 세포에서 epidermal growth factor receptor (EGFR) 저해제인 nimotuzumab에 의한 방사선 민감도 증진 효과를 살펴보고자 한다. 대상 및 방법: 총 4종류의 인간 유래 대장암 세포주인 HCT-8, LoVo, WiDr, HCT-116를 nimotuzumab과 방사선을 병합 처리한 후 세포증식, 생존율, 세포주기 진행에 미치는 영향을 MTT, clonogenic survival assay, flow cytometry와 western blot을 통해 분석하였다. 결 과: 대장암 세포주에서 nimotuzumab에 의해 EGFR 인산화가 억제됨을 확인하였고 이러한 조건에서 nimotuzumab이 HCT-116을 제외한 나머지 3종류의 대장암 세포주의 방사선 민감도를 증진시킴을 확인하였다. 반면에, nimotuzumab은 방사선 조사와 무관하게 대장암 세포의 증식이나 세포 주기에는 아무런 영향을 미치지 않았다. 결 론: Nimotuzumab은 EGFR에 의한 세포 생존 신호 전달을 억제함으로써 대장암 세포의 방사선에 대한 민감도를 증가시켰다. 본 연구는 대장암의 방사선 치료에 EGFR 특이적 저해제인 nimotuzumab의 임상 적용 근거를 제공하였다.

Suppressive Effect of Sinomenine Combined with 5-Fluorouracil on Colon Carcinoma Cell Growth

  • Zhang, Ji-Xiang;Yang, Zi-Rong;Wu, Dan-Dan;Song, Jia;Guo, Xu-Feng;Wang, Jing;Dong, Wei-Guo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6737-6743
    • /
    • 2014
  • It is reported that sinomenine (SIN) and 5-fluorouracil (5-FU) both are effective for colon cancer, but their cooperative suppressive effects and toxicity remain to be clarified in detail. This study aimed to determine suppressive effects and toxicity of sinomenine (SIN) plus 5-fluorouracil (5-FU) on LoVo colon carcinoma cells in vitro and in vivo. CCK-8, Hoechst 33258 staining and an annexin V-FITC/PI apoptosis kit were used to detect suppressive effects. Western blotting was applied to investigate the essential mechanism underlying SIN and 5-FU-induced apoptosis. SIN or 5-FU or both were injected into nude mice, and then suppressive effects and side effects were observed. SIN plus 5-FU apparently inhibited the proliferation of LoVo cells and induced apoptosis. Moreover the united effects were stronger than individually (p<0.05). The results of annexin V-FITC/PI staining and Hoechst 33258 staining showed that the percentage of apoptotic cells induced by SIN and 5-FU combined or alone was significantly higher than the control group (p<0.05). Expression of Bax and Bcl-2 was up-regulated and down-regulated respectively. SIN or 5-FU significantly inhibited effects on the volume of tumour xenografts and their combined suppressive effects were stronger (p<0.05). No obvious side effects were observed. It was apparent that the united effects of SIN and 5-FU on the growth of colorectal carcinoma LoVo cells in vitro and in vivo were superior to those using them individually, and it did not markedly increase the side effects of chemotherapy.

Synthetic Homoisoflavane Derivatives of Cremastranone Suppress Growth of Colorectal Cancer Cells through Cell Cycle Arrest and Induction of Apoptosis

  • Shin, Ha-Eun;Lee, Seul;Choi, Yeram;Park, Sangkyu;Kwon, Sangil;Choi, Jun-Kyu;Seo, Seung-Yong;Lee, Younghee
    • Biomolecules & Therapeutics
    • /
    • 제30권6호
    • /
    • pp.576-584
    • /
    • 2022
  • Colorectal cancer is diagnosed as the third most prevalent cancer; thus, effective therapeutic agents are urgently required. In this study, we synthesized six homoisoflavane derivatives of cremastranone and investigated their cytotoxic effects on the human colorectal cancer cell lines HCT116 and LoVo. We further examined the related mechanisms of action using two of the potent compounds, SH-19027 and SHA-035. They substantially reduced the cell viability and proliferation in a dose-dependent manner. Treatment with SH-19027 and SHA-035 induced cell cycle arrest at the G2/M phase and increased expression of p21 both of which are implicated in cell cycle control. In addition, the apoptotic cell population and apoptosis-associated marker expression were accordingly increased. These results suggest that the synthesized cremastranone derivatives have anticancer effects through the suppression of cell proliferation and induction of apoptosis. Therefore, the synthesized cremastranone derivatives could be applied as novel therapeutic agents against colorectal cancer.