• Title/Summary/Keyword: LoRa(: Long Range)

Search Result 51, Processing Time 0.024 seconds

Hybrid approach based on LoRaWan and Wi-Fi fingerprint toward outdoor localization (LoRaWan 및 Wi-Fi fingerprint 기반 사용자 위치 추정 시스템)

  • Lee, Soon Bin;Kim, Woo Seong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.73-75
    • /
    • 2018
  • LoRaWan(Long Range Wide Area Network)은 저전력, 장거리 특성을 가진 무선 통신기술로 그 특성상 스마트 시티(Smart City), IoT(Internet of Things) 등에 각광받고 있다. 또한 LoRaWan은 Chirp 신호 특성에 의해 실외 삼각측량에 따른 사용자 위치 추정 기술을 제공한다. 본 논문에서는 이러한 LoRaWan의 특성에 더해 Wi-Fi 지문 정보를 활용하여 위치 추정 정확도를 개선하고 또한 이웃 Wi-Fi 단말들, 가령 스마트폰 등의 위치 정보를 LoraWan 게이트웨이와 통신하여 최종적으로 서버에서 측위 할 수 있는 시스템을 제안한다.

A Study on the Establishment of Massive IoT based on Low Power Wide Area Network Technology (저전력 광역 네트워크 기술 기반 Massive IoT 구축 연구)

  • Lee, Gyeongheon;Hong, Jiyeon;Youn, Joosang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.103-104
    • /
    • 2019
  • 최근 스마트시티 구축 사업에서 사물인터넷 기반 서비스 개발이 활발히 진행 중이다. 그 서비스들을 제공하기 위해 사용되어야 할 디바이스 수가 수백만 개까지 증가할 것으로 예상하고 있으며 수백만 개의 디바이스들을 수용하기 위해서는 Massive IoT 네트워크의 환경 구축을 필요로 하고 있다. 따라서 본 논문에서는 Massive IoT 네트워크 환경을 구축하기 위해 저전력 광역 네트워크(LPWAN) 기술 중 LoRa(Long Range) 네트워크가 적용이 가능한지를 LoRaSim을 이용하여 시뮬레이션한다. 시뮬레이션한 결과 중 충돌 횟수를 통해 충동률을 구하고 그래프를 이용하여 신뢰성을 나타내며, Massive IoT 네트워크에 적합성에 대해 분석한다.

  • PDF

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

A Study on Intelligent Bus Management System using Beacon-based BIS (비콘을 활용한 BIS 연동 지능형 버스관리 시스템 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.47-52
    • /
    • 2017
  • This study is BIT(: Bus Information Terminal) features that take advantage of KEPCO eIoT(: energy Internet of Thing) platform, and it's Network configuration is composed of display terminal device, gateway, platform, and the service server. The key features are parts for processing protocol data between the gateway and the device using LoRa(: Long Range) technology, Intelligent applications and SIP(: Session Initiation Protocol) data handling connected to the Taxi reservation system. And the resource tree provided BIT for the service, which commonly used in the application server and the device.

A Study on Disaster Evacuation System in Busan Urban Transit using LoRa Wireless Network (LoRa 무선네트워크 기반 부산도시철도 재난대피 시스템 적용에 관한 연구)

  • Lee, Moo-Hyun;Park, Hee-Chul;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.417-419
    • /
    • 2016
  • Internet of things(IoT) services should be available to provide unattended operation in a remote area, long battery life, low-cost infrastructure, two-way communication platform. Urban transit in Busan is made up of the wire-based infrastructure except for voice infrastructure of transmit/receive and new data infrastructure is required for Internet of things(IoT) services. Urban transit environments in Busan were analyzed in order to apply LoRa Wireless Network(the standard communication way of IoT) and proposes a building after a Disaster Evacuation System.

  • PDF

Design of parking information service system using LoRa network (LoRa 네트워크를 활용한 주차정보 서비스 시스템 설계)

  • Kim, YuChan;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.111-114
    • /
    • 2020
  • 모든 주차 면수에 대해 감지하는 시스템은 큰 비용이 필요하여 주차정보 제공을 위해 필요한 스마트 주차장의 설치를 부담스럽게 하므로 애플리케이션을 통한 주차정보 제공을 어렵게 한다. 본 논문에서 제안하는 시스템은 외부 디바이스, 서버, 애플리케이션으로 구성된다. 주차장 출입로에 아두이노를 활용한 IOT 디바이스를 설치하여 센서를 통해 출입 차량을 감지하고 소량의 데이터를 장거리 전송할 때 적합한 LoRa(Long Range) 네트워크를 통해 주차정보를 서버로 전송하며 사용자의 요청이 있을 때 주차정보를 제공한다. 기존 시스템보다 감지범위를 줄이고 LoRa 네트워크를 활용한 시스템을 통해 주차공간 탐색으로 인한 사회적 비용과 시스템 구축비용을 절감하는 효과를 기대할 수 있다.

A Design of Industrial Safety Service using LoRa Gateway Networks (LoRa 게이트웨이 네트워크를 활용한 산업안전서비스 설계)

  • Chang, Moon-soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.313-316
    • /
    • 2021
  • In the IoT(IoT: Internet of Things) environment, network configuration is essential to collect data generated from objects. Various communication methods are used to process data of objects, and wireless communication methods such as Bluetooth and WiFi are mainly used. In order to collect data of objects, a communication module must be installed to collect data generated from sensors or edge devices in real time. And in order to deliver data to the database, a software architecture must be configured. Data generated from objects can be stored and managed in a database in real time, and data necessary for industrial safety can be extracted and utilized for industrial safety service applications. In this paper, a network environment was constructed using a LoRa(LoRa: Long Range) gateway to collect object data, and a client/server data collection model was designed to collect object data transmitted from the LoRa module. In order to secure the resources necessary for data collection and storage management without data leakage, data collection should be possible in real time. As an application service, location data required for industrial safety can be stored and managed in a database in real time.

  • PDF

Implementation of GPS-based Wireless Loss Prevention System using the LoRa Module (LoRa 모듈을 이용한 GPS기반 무선 분실 방지 시스템 구현)

  • Ko, Jun-Hyeok;Han, Dong-Kyun;Lee, Se-Ra;Park, Ha-Yeon;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.761-768
    • /
    • 2017
  • As the loss prevention system using bluetooth has a short communication range, it has a problem which its location is not known if it is strayed out of a certain distance. To overcome shortcoming of such an existing loss prevention system, this paper proposes a GPS-based wireless loss prevention system without communication fee using the LoRa Communication with a long distance. The proposed system performs a remote control application on the smart-phone and then is able to get a long-distance GPS coordinates about the location of the loss prevention system on the google map. For performance evaluation of the implemented proposed system, the experiments for transmitting and receiving data are done in open terrain, indoor and outdoor areas and the experiment results identified the superiority of the proposed system in the long-distance.

Embedded System Design with COS LoRa technology (COS LoRa 기반의 임베디드 시스템 설계)

  • Hong, Seonhack;Cho, Kyungsoon;Yoon, Jinseob
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 2018
  • It is the approach of embedded system design that analyzes COS(Cut Out Switch) failure in the power distribution and an instantaneous breakdown of power distribution supply could cause the weakness of industrial competence and therefore we need to feed the stable power distribution with developing the technology of open-source embedded system. In this paper, we apply the LoRa technology which is the Internet of Things(IoT) protocol for low data rate, low power, low cost and long range sensor applications. We designed the hardware and software architecture setup and experimented the embedded system with network architecture and COS monitoring system including accelerometer for detecting the failure of distribution line and sensing the failure of its fuse holder by recognizing the variation and collision and afterwards sending the information to a gateway. With experimenting we designed the embedded platform for sensing the variation and collision according to the COS failure, monitoring its fuse holder status and transferring the information of states with LoRa technology.