• Title/Summary/Keyword: Livestock manure management

Search Result 128, Processing Time 0.035 seconds

Evaluation of the properties and the papermaking applicability of the residue originated from the anaerobic digestion of livestock manure (축산분뇨 혐기소화 잔재물의 특성 및 초지 적용성 평가)

  • Kim, Seung Min;Jung, Woong-Gi;Sung, Yong Joo;Ahn, Hee-Kwon;Kim, Dong Sung;Yoon, Do-Hyun;Kim, Dong-Seop;Jung, Hwa Gwang
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.3
    • /
    • pp.58-64
    • /
    • 2014
  • Management of organic waste such as livestock manure has been considered as very important issue in terms of the environment. The anaerobic digestion of livestock manure become more attractive treatment method and has been widely applied. In this work, the properties of the residue after the anaerobic digestion of livestock manure was evaluated for providing the basic data to develop new application. The lignin and the ash contents of the residue were much higher than those of other biomass such as wood. The components of the residue were also analyzed with SEM-EDS and Elemental Analyzer. The addition of the residue into the handsheet paper resulted in the higher bulk and he higher air permeability with the loss of the strength properties. The water holding capacity of the handsheet were increased until the 40 % addition of the residue.

Potential application of urease and nitrification inhibitors to mitigate emissions from the livestock sector: a review

  • Eska, Nugrahaeningtyas;Eska, Nugrahaeningtyas;Jun-Ik, Song;Jung-Kon, Kim;Kyu-Hyun, Park
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.603-620
    • /
    • 2022
  • Human activities have caused an increase in greenhouse gas emissions, resulting in climate change that affects many factors of human life including its effect on water and food quality in certain areas with implications for human health. CH4 and N2O are known as potent non-CO2 GHGs. The livestock industry contributes to direct emissions of CH4 (38.24%) and N2O (6.70%) through enteric fermentation and manure treatment, as well as indirect N2O emissions via NH3 volatilization. NH3 is also a secondary precursor of particulate matter. Several approaches have been proposed to address this issue, including dietary management, manure treatment, and the possibility of inhibitor usage. Inhibitors, including urease and nitrification inhibitors, are widely used in agricultural fields. The use of urease and nitrification inhibitors is known to be effective in reducing nitrogen loss from agricultural soil in the form of NH3 and N2O and can further reduce CH4 as a side effect. However, the effectiveness of inhibitors in livestock manure systems has not yet been explored. This review discusses the potential of inhibitor usage, specifically of N-(n-butyl) thiophosphoric triamide, dicyandiamide, and 3,4-dimethylpyrazole phosphate, to reduce emissions from livestock manure. This review focuses on the application of inhibitors to manure, as well as the association of these inhibitors with health, toxicity, and economic benefits.

Evaluation of Ammonia Emission from Liquid Pig Manure Composting System with Forced Aeration (돈분뇨의 호기적 액비화 과정에서 암모니아 휘산량 평가)

  • Kim, Tae-Young;Kim, Song-Yeob;Chang, Hong-Hee;Yun, Hong-Bae;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.366-368
    • /
    • 2013
  • BACKGROUND: Composting is the most frequently used waste management process for animal manure in Korea's livestock industry. In the composting process, a large amount of nitrogen (N) is volatilized to the atmosphere as amonia ($NH_3$). However, quantitative information of $NH_3$ emission from composting of liquid manure is required to obtain emission factors for management of livestock manure in Korea. METHODS AND RESULTS: To evaluate the $NH_3$ emission from composting of liquid manure affected by aeration, we conducted composting of liquid pig manure with three forced aeration systems. The aeration conditions were continuous (A60), cycle of 30 min aeration and 30 min pause (A30S30) and without aeration(A0). All treatments were aerated 12 hour per day with these aeration systems. The total ratio of $NH_3$ volatilization loss to total N content in liquid manure throughout composting period was estimated to 19.9% for A0 treatment, 25.9% for A30S30 treatment and 36.3% for A60 treatment. The A30S30 and A60 aeration systems increased $NH_3$ volatilization by 30.2 and 82.3% compared with systems without forced aeration. CONCLUSION(S): Ammonia emission during liquid pig manure composting was highly affected by forced aeration. The development of liquid pig manure composting systems with forced aeration would be considered both reducing ammonia emission and efficiency of composting.

Investigation of Hanwoo manure management and estimation of nutrient loading coefficients on land application

  • Won, Seunggun;You, Byung-Gu;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.57 no.5
    • /
    • pp.20.1-20.8
    • /
    • 2015
  • Background: In order to prepare for the regulation about the limit of manure production, the status of manure management and the amount of nutrients in the compost discharged from Hanwoo breeding farm shall be known. This study aimed to find the practical amount of nutrients (volatile solids, VS; total nitrogen, T-N; total phosphorus, T-P) in manure, and compost samples collected from 40 Hanwoo breeding farms and the loss of the nutrients was calculated during the composting period, which supports to develop nutrient loading coefficients (NLCs) for each nutrient. Results: Although the addition of bedding materials for composting caused the increase of the VS amount before composting, the comparison of VS, N, and P amounts in between manure and compost showed the lower VS by 4 % as well as T-N and T-P amounts by 69 and 40 %, respectively, of which values were corresponded with the NLCs of 0.96, 0.31, and 0.60 for VS, N, and P, respectively, based on the questionnaire, and sample analyses. Considering with the environmental impacts including land application from Hanwoo manure, P loss should be zero before and after composting. In this regard, nitrogen loss of 50 % occurs and VS was increased by 30 %. In addition, feasible cases for the calculations based on the notification from Ministry of Environment were compared with this study. Conclusions: The development of NLCs from Hanwoo manure in this study implies that the loss of nutrients in manure occurs during the composting or storing period. The mass balances of N and P from livestock manure to land application may be overestimated over the practical values. It is necessary to build up the database about each livestock category other than Hanwoo.

Development of Guidelines for Animal Waste Land Application to Minimize Water Quality Impacts (축산분뇨 농지환원을 위한 적정관리방안)

  • 홍성구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.136-146
    • /
    • 2002
  • Land application of manure compost is considered one of the widely-used animal waste management practices. Many livestock farms adopt composting for their animal waste disposal and apply the compost to crop fields. While standard rates have been established based on researches with respect to land application of manure compost recently, there have been few discussions on water quality impact of the application. Water quality impact should be taken into account in land applications of manure compost. In this study, management practices were proposed based on the investigation of water quality of leachate from manure compost under rainfall simulation, field studies, and monitoring runoff water quality from farm fields after land application of animal waste. The concentrations of major water quality parameters of the leachate were significantly high, whereas those of runoff from soils after tillage for soil incorporation, were not affected by the application based on a series of experiments. Runoff water from farm fields after land application also showed high concentrations of pollutants. Appropriate management practices should be employed to minimize pollutant loading from manure applied fields. Proposed major management practices include 1) application of recommended amounts, 2) proper tillage for complete soil and manure incorporation, 3) field management to prevent excessive soil erosion, 4) complete diversion of inflow into the field from outside, 5) implementation of vegetative buffer strips near boundaries, and 6) prevention of direct discharge of runoff water front fields Into streams.

Study on the Management Level of Pathogenic Bacteria in HACCP System Implemented Animal Farms (HACCP 적용 농장의 병원성 세균 관리수준에 관한 연구)

  • Lee, Gi-Yun;Lee, Joo-Yeon;Back, Seung-Hee;Hwang, In-Jin;Lee, Kyung-Soon;Kim, Young-Su;Kim, Byoung-Hoon;Kim, Hyun-Soo;Kang, Soo-Cheol;Cho, Jea-Jin;Park, Min-Seo;Suk, Hee-Jin;Nam, In-Sik
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.67-74
    • /
    • 2011
  • The aim of this study was to understand the management level of pathogenic bacteria in HACCP system implemented animal farms. Microbial samples were collected from manure, floor, compost depot, manure on belt, low milk tank, dust in laying house and egg collector in HACCP system implemented Korean beef cattle, dairy cattle, swine, and laying Hens farms. O157, O111 and O26 strains of E. coli were not detected in HACCP system implemented Korean beef cattle farm. The detection rate of E. coli from manure and floor in HACCP system implemented cattle farms (Korean beef cattle and dairy farm) was lower than those of non-HACCP system implemented cattle farm. Salmonella spp. was detected in HACCP system implemented cattle farms (Korean beef cattle and dairy farm). Compared with pervious studies, lower detection rate of Salmonella spp. at floor and compost depot in HACCP system implemented swine and commercial layer farms were indicated. In conclusion, implementation of HACCP system in animal farms would enhance the management level of biological hazard compare to normal animal farms.

Nutrient production from dairy cattle manure and loading on arable land

  • Won, Seunggun;Shim, Soo-Min;You, Byung-Gu;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: Along with increasing livestock products via intensive rearing, the accumulation of livestock manure has become a serious issue due to the fact that there is finite land for livestock manure recycling via composting. The nutrients from livestock manure accumulate on agricultural land and the excess disembogues into streams causing eutrophication. In order to systematically manage nutrient loading on agricultural land, quantifying the amount of nutrients according to their respective sources is very important. However, there is a lack of research concerning nutrient loss from livestock manure during composting or storage on farms. Therefore, in the present study we quantified the nutrients from dairy cattle manure that were imparted onto agricultural land. Methods: Through investigation of 41 dairy farms, weight reduction and volatile solids (VS), total nitrogen (TN), and total phosphorus (TP) changes of dairy cattle manure during the storage and composting periods were analyzed. In order to support the direct investigation and survey on site, the three cases of weight reduction during the storing and composting periods were developed according to i) experiment, ii) reference, and iii) theoretical changes in phosphorus content (${\Delta}P=0$). Results: The data revealed the nutrient loading coefficients (NLCs) of VS, TN, and TP on agricultural land were 1.48, 0.60, and 0.66, respectively. These values indicated that the loss of nitrogen and phosphorus was 40% and 34%, respectively, and that there was an increase of VS since bedding materials were mixed with excretion in the barn. Conclusion: As result of nutrient-footprint analyses, the amounts of TN and TP particularly entered on arable land have been overestimated if applying the nutrient amount in fresh manure. The NLCs obtained in this study may assist in the development of a database to assess the accurate level of manure nutrient loading on soil and facilitate systematic nutrient management.

Impact of Livestock-production Wastewater on Water Pollution (가축분뇨수의 무단방류가 샛강오염에 미치는 영향)

  • Choe, Hong-Rim;Son, Jae-Ho;Ryu, Sun-Ho
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Environmental impact assessment survey reflecting farmers` opinion on the residence and production space in rural settlement area by ORD showed that more than 86% of respondents thought their reservoirs and waterways (small rivers) were getting seriously contaminated primarily by garbage and livestock manure. A typical rural settlement unit was taken to assess the impact of improper management of livestock manure in the farms on the water quality of small river flowing down along the villages where swine and dairy farms were situated in Daejook 2, 3-ri, Seolseong-myun, Icheon-gun. Nitrogen compounds such as NO$_3$-N, NO$_2$-N, NH$_3$-N, and phosphorus compound H$_x$PO$_4$, DO, BOD$_5$, COD, and microbial density were analyzed to evaluate water quality at five test sites designated along the water stream. Tests showed. for example, BOD$_5$ at site 4 was average 9.2mg/l which was about 3~8 times higher than that of observation site 2 and 3, at which most livestock houses were situated. This is a clear evidence that the nutrients of livestock manure illegally discharged to small river can lead to an eutrophication of the river at downstream. A soil absorption system with aeration could be one of alternatives to treat the contaminated wastewater by livestock manure. The place at downstream, inbetween observation site 1 and 2, could be the best construction site for the treatment facility from the standpoint of the overall treatment efficiency, An enclosed composting system can also be regarded as a good alternative for treatment of the sludge which is the by-product of the soil absorption system operation.

  • PDF

Current Status and Perspectives of Livestock Environment Improving Agents for the Characteristics and Control of Swine Manure Odor (양돈 분뇨의 악취특성 및 문제 해결을 위한 환경개선제 사용 현황 및 전망)

  • Lee, Eun-Young;Lim, Jung-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.244-254
    • /
    • 2010
  • The trend toward intensification of livestock raising, confinement in barn has increased in recent days. The move toward concentrated animal feeding operations reduces per unit costs and permits farmers to better earnings in spite of fluctuation in hog prices. However, this also results in outbreaks of a lot of animal wastes and odorous compounds. Emissions of these malodorous compounds produced from concentrated animal feeding operations have become a concern for both public and regulatory agencies and are causing the complaints of residents in rural area. For competitive sustainable swine production industry, odor management plans systematically identify potential odor sources, determine control strategies to reduce these odors, and establish criteria for implementing these strategies. Since, the malodor originates from microbial activities involving a variety of microbes, understanding the characteristics of the microflora present in swine manure is essential for developing effective odor control techniques. This paper reviews the available information in the literature related to the types of bacteria in swine manure, the potential odorous compounds associated with different bacterial genera, and the corresponding techniques used to control odor based on microbiological principles.

Isolation and Selection of Functional Microbes for Eco-friendly Turfgrass Management in Golf Course from Livestock Manure Compost (친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발)

  • Jeong, Je-Yong;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 2017
  • Functional microorganisms decompose various organic matter by enzyme activity and suppress plant disease caused by pathogen. This study was conducted to isolate and select functional microorganisms with protein or carbohydrate degradation activities and antagonistic activity against turfgrass fungal pathogens for eco-friendly turfgrass management in golf course from compost containing livestock manure of poultry or swine. Totally 68 isolates collected from livestock manure compost strains were isolated and tested for their activities of amylase, protease and lipase and antagonistic activities against Rhizoctonia solani AG2-2, R. solani AG1-1, and Sclerotinia homoeocarpa. Among the isolates, 34 strains were selected as functional microbes showing higher activities of amylase and protease. Three isolates of ASC-14, ASC-18, and ASC-35 among the 34 strains were selected as antifungal bacterial strains repressing the above 3 turfgrass fungal pathogens. Analysis results of 16s rRNA gene sequence and phylogenic cluster indicated that ASC-14 and ASC-18 belonged to Bacillus amyloliquefaciens, while ASC-35 was B. subtilis, respectively.