• Title/Summary/Keyword: Livestock liquid fertilizer

Search Result 87, Processing Time 0.021 seconds

A Comparative Study on Correlation Through Physiochemical Property Comparision of Livestock Liquid Fertilizer (가축분뇨 액비의 이화학적 특성비교를 통한 상관성 비교연구)

  • Jeon, Sang-Joon;Kim, Soo-Ryang;Hong, In-Gi;Kim, Ha-Je;Kim, Dong-Gyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.163-168
    • /
    • 2013
  • Today, a desirable way to manage livestock manure is to activate its utilization as a resource. The production of high quality liquid fertilizer of livestock manure is very important because it increases the use of various liquid fertilizer. However, the result of mature evaluation with a maturity measuring instrument for liquid fertilizer showed that the deviation of concentration between liquid fertilizer did not bring into uniformity. The result is also making sure that quality management for liquid fertilizer is not smoothly made. Quality evaluation for compost and liquid fertilizer includes physical, biological, chemical and microbiological methods, but a chemical method is mainly being implemented due to fairness and field application. Therefore, this study figured out correlation in feces and urine through regression analysis of livestock manure and tried to create a research plan to carry out efficient quality analysis of managing livestock manure.

A Study to Draw a Plan of Liquid Fertilizer Quality Certification Standards for Livestock Manure Management (가축분뇨의 관리를 위한 액비품질인증기준 방안도출 연구)

  • Jeon, Sang-Joon;Kim, Soo-Ryang;Hong, In-Gi;Kim, Ha-Je;Kim, Dong-Gyun;Lee, Myung-Gyu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.183-190
    • /
    • 2013
  • Establishment of a new concept of environmental friendly livestock manure management is required based on the facts. But now liquid fertilizer quality in korea shows a large difference among regions and the regulations are uncertain. Focusing on precedent study on main level-grading factors of liquid fertilizer quality certification, the study collected laws and standards related to liquid fertilizer of livestock manure at home and abroad and produced evaluation standards. Liquid fertilizer was divided into four factors (fertilizing value, harmfulness, stability and uniformity). According to each item, scores were awarded based on 16 details: fertilizing value (Nitrogen concentration, the whole concentration of Nitrogen, Phosphoric acid and Kalium), harmfulness (heavy metals, pathogenic microorganism and antibiotics), stability (maturity degree and odour), uniformity (EC, BOD, SS, moisture content and salt). The grade of liquid fertilizer, A (42~48), B (34~41), C (26~33) were rated using total scores.

A Study on the Nutrient Composition and Heavy Metal Contents in Livestock Manure Compost·Liquefied Fertilizer (가축분뇨 퇴비·액비의 비료성분 및 중금속 함량에 관한 연구)

  • Ahn, Taeung;Kim, Dongmin;Lee, Heungsoo;Shin, Hyunsang;Chung, Eugene
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.306-314
    • /
    • 2021
  • The application of organic fertilizer could be accompanied by potential hazards to soil and humans due to trace metals. Livestock manure compost·liquefied fertilizer is a well-established approach for the stabilization of nutrients and the reduction of pathogens and odors in manures, which can be evaluated as compost·liquefied. In this study, the livestock manure compost·liquefied fertilizers produced at 333 liquid manure public resource centers and liquid fertilizer distribution centers were collected from May to December 2019. The nutrient content (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content were investigated. The livestock manure compost·liquefied fertilizer was measured using a mechanical maturity measurement device. The organic matter, arsenic, cadmium, mercury, lead, chromium, copper, nickel, zinc, E. coli (O157:H7), Salmonella, etc. of the livestock manure compost·liquefied fertilizers were analyzed. The average heavy metal content in the livestock manure compost·liquefied fertilizer was as follows: Cr 2.9 mg/kg (0.2~8.7 mg/kg), Cu 20.4 mg/kg (1.6~74.1 mg/kg), Ni 1.3 mg/kg (0.4~4.2 mg/kg), and Zn 79.8 mg/kg (3.0~340.7 mg/kg). Although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to standardize livestock manure compost·liquefied fertilizer in order to facilitate efforts to turn livestock manure into useful resources.

Characterization of Microbial Community Changes in Process Affected by Physicochemical Parameters During Liquid Fertilization of Swine Waste

  • Shin, Mi-Na;Kim, Jin-Won;Shim, Jaehong;Koo, Heung-Hoe;Lee, Jai-Young;Cho, Min;Oh, Byung-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.173-181
    • /
    • 2013
  • Livestock wastes are considered as major environmental pollutants because they contain high concentration of organic materials. In 2001, The Environmental Department reported that stock farmers were increasing as 5.1%/year, which resulted in a gradual increase in livestock wastes generation. The direct disposal of livestock wastes create several environmental problems. Thus, several countries banned the disposal of livestock wastes in environment including aquatic systems. Recently, aeration-based liquid fertilization was considered as potential way for the disposal of livestock wastes. In this study, next generation sequencing (NGS) analysis was used to understand the microbial community changes during liquid fertilization of livestock wastes. Microbial community was compared with liquid fertilizer physicochemical analysis such as $BOD_5$, $COD_{Mn}$ pH, N (Nitrogen), P (Phosphorus), K (Potassium) etc. The physicochemical parameters and bacterial community results pave the way for producing effective livestock-based fertilizer. By comparing the physical characteristics of the manure with microbial community changes, it is possible to optimize the conditions for producing effective fertilizer.

Runoff Characteristics of the Livestock Manure as Fertilizer at Farmland (가축분뇨 비료의 농지 유출 특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.775-780
    • /
    • 2010
  • Over 90% of the livestock excretions were treated and utilized by land application in Korea. Excessive application of the livestock manure as fertilizer has been issued as a main pollutant source in groundwater and watersheds. This study was seasonally conducted to identify the discharging characteristics with a certain artificial rainfall intensity (13 mm/hr) in terms of surface runoff, groundwater, and soil residue mass depending on the livestock manure types. A experimental field was constructed with three different sites that pig liquid fertilizer (LF), cattle manure (CM), and standard (S). The pig liquid fertilizer of 1,200 L and cattle manure of 900 kg were sprayed on each site ($50m^2$). The standard area was firmly prevented from any other contaminants. In the LF site, farmland discharging rate (FDR) was computed as 0.006 in CODcr, 0.015 in TN, and 0.029 in TP, resulted from the mass balance among total injection mass, surface runoff and groundwater. In the CM site, 29% of the nitrogen and phosphorus in each were discharged to the surface, and 64% and 58% of them were remained in the farmland. Surface runoff rate of the CM was higher than that of the LF, resulted from the solid form of the CM.

Simultaneous Removal of Organic Pollutants, N, P, and Antibiotics from Liquid Fertilizer using a Microbubble and Catalyst Coupling System (마이크로버블/촉매 융합 시스템을 이용한 액비 내 유기오염물질, N, P 및 항생제 동시 제거)

  • Lee, Dong Gwan;Sim, Young Ho;Paek, Yee;Kwon, Jin Kyung;Jang, Jae Kyung
    • Journal of Environmental Science International
    • /
    • v.28 no.11
    • /
    • pp.983-991
    • /
    • 2019
  • This study investigated the use of a hydroxyl-radicals-generated microbubble/catalyst (MB/Cat) system for removing organic pollutants, nitrogen, and phosphorous from liquid fertilizer produced by livestock wastewater treatment. Use of the MB/Cat system aims to improve the quality of liquid fertilizer by removing pollutants originally found in the wastewater. In addition, a reduction effect has been reported for antibiotics classified as representative non-biodegradable matter. Samples of liquid fertilizer produced by an aerobic biological reactor for swine wastewater treatment were first analyzed for initial concentrations of pollutants and antibiotics. When the MB/Cat system was applied to the liquid fertilizer, TCOD, TOC, $BOD_5$, and $NH_3-N$, and $PO_4-P$ removal efficiencies were found to be approximately 52%, 51%, 30%, 21%, and 66%, respectively. Additionally, Amoxicillin hydrate was removed by 10%, and Chlortetracycline HCl and Florfenicol were not present at detectable levels These findings confirm that the MB/Cat system can be used with livestock wastewater treatment to improve liquid fertilizer quality and to process wastewater that is safe for agricultural re-use.

Production of Eco-friendly Aminotosan® Fertilizer from Waste Livestock Blood using Chitosan Coagulation

  • Kim, Hyeon-Jeong;Shin, Myung-Seop;Jeon, Yong-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.724-730
    • /
    • 2015
  • The aim of this study was to produce Aminotosan$^{(R)}$ fertilizer using optimized chitosan coagulant from waste livestock blood. Amino-acid fertilizer was produced by pretreated livestock blood. Chitosan coagulant was aggregated with amino-acid fertilizer to produce Aminotosan$^{(R)}$. Optimized coagulation conditions were set using chitosan coagulant such as 10% citric acid and 500 ppm chitosan coagulant by analysis of CST and TTF. The efficiency of coagulation by chitosan coagulant under the optimal conditions was better than chemical coagulants. After solid/liquid separation for coagulated amino-acid fertilizer, Aminotosan$^{(R)}$ fertilizer which added eco-friendly and aesthetic functions was produced.

Changes of Soil Properties in Corn (Zea mays L.) Fields Treated with Compost and Liquid Fertilizer (가축분뇨 퇴.액비가 시용된 옥수수 밭토양 특성 변화)

  • Kim, Min-Kyeong;Kwon, Soon-Ik;Kang, Seong-Soo;Jung, Goo-Bok;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.473-478
    • /
    • 2011
  • A wide diversity of liquid fertilizers and composts produced from the livestock manure in Korea is commonly applied to agricultural lands as an alternative of chemical fertilizers. However, their effects on the crop production and environmental impacts are still vague. The current study was conducted to understand the effects of the pig manure-based liquid fertilizer on the growth of Zea mays L. and soil properties. Four different liquid fertilizers were treated to each cultivated upland plot located in Gyeong-gi province, Korea while no fertilizer (control A) and a chemical fertilizer (control B) were treated to separate plots for comparison. The liquid fertilizer treatment did not make a significant difference in the fresh weight of Zea mays L. compared to the controls. This is probably due to the nutrient residues carried over from the last year fertilization. Electric conductivity (EC) and organic matter contents in soils were increased right after the liquid fertilizer treatments compared to the controls. However, soil pH was maintained as the same as the level of control A. A long-term effect of the continuous treatment of the manure based liquid fertilizer will be carried out in the successive study.

Effects of Liquid Fertilizer of Application from Rendered Livestock Carcass Residues on Maize Cultivation (랜더링 처리된 가축사체 잔류물로 제조한 액비 시용이 옥수수 재배에 미치는 효과)

  • Jae-Hyuk Park;Se-Won Kang;Jin-Ju Yun;Han-Na Cho;Seung-Gyu Lee;So-Hui Kim;Seong-Woo Choi;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.236-244
    • /
    • 2022
  • BACKGROUND: Liquid fertilizers can provide nutrients to crops effectively and quickly. Amino acid liquid fertilizers produced by decomposing the residues of rendered livestock carcasses are expected to be effective in improving the productivity and quality of crops. METHODS AND RESULTS: The treatment conditions for maize cultivation were control (Cn), inorganic fertilizer (IF), inorganic fertilizer and rendering residue liquid fertilizer (IF+RALF), compost (CP), compost and rendering residue liquid fertilizer (CP+RALF). Crop productivity, sugar content, and nutrient uptake were investigated after maize harvest in the field applied with liquid fertilizers. Maize yields ranged from 87.6-158 g/plant, and the yield increased by 7.9% and 12.9% in IF+RALF IF+RALF and CP+RALF than in IF and CP, respectively. The maize sugar content increased in the range of 0.1-0.5 brix % by rendering residue liquid fertilizer (RALF) fertilization, and the sugar content was the highest in CP+RALF. There was no significant change in soil chemical properties of the soil due to liquid fertilizer treatment. CONCLUSION(S): RALF increased yield and sugar content in maize cultivation, and fertilization with organic fertilizers was more effective for maize cultivation than inorganic fertilizers. Residues of rendered livestock carcass can be recycled as amino acid fertilizers, which can be effectively used for crop production and quality improvement.

A study on the improvement measures of livestock manure management and organic fertilizer use in Nonsan area (가축분뇨 관리 및 퇴비·액비 이용에 대한 개선방안 고찰 - 논산지역을 중심으로 -)

  • Jeong, Dong-Hwan;Shin, Jinsoo;Lee, Chulgu;Yu, Soonju;Kim, Yongseok
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.4
    • /
    • pp.345-359
    • /
    • 2013
  • The Ministry of Environment established a plan for advancement of livestock manure management in July 2011 and finalized the "Comprehensive Measures for Advancement of Livestock Manure Management" in May 2012 complementing and strengthening the plan. In this process, it was necessary to investigate the status of discharge of livestock manure and its environmental impact, for example on rivers, groundwater, arable outflow water and soil. We investigated types of livestock husbandry, discharge of livestock manure, and production and use of organic fertilizers and presented the improvement measures of livestock manure management and organic fertilizer use. First, it is necessary to come up with measures to calculate appropriate density and numbers of livestock animals and prevent overcrowded breeding. Second, as many of the private livestock manure treatment facilities are out-dated and their long-term aerated reaction tanks are not regularly managed, it is necessary to find ways to improve those facilities through inspection and diagnosis. In addition, since existing public treatment facilities are designed to add clean water to belt filter press, additional water is needed. Therefore, it is necessary to improve belt filter press in order to decrease the extra water. Finally, although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to establish standards for maturity of liquid fertilizers in order to facilitate efforts to turn livestock manure into resources.