• Title/Summary/Keyword: Livestock Manure

Search Result 499, Processing Time 0.039 seconds

Study on the characteristics of nonpoint source runoff at livestock manure treatment plants (가축분뇨처리시설의 비점오염원 유출특성에 관한 연구)

  • Cho, Sung Jin;Rhee, Han Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.566-566
    • /
    • 2016
  • 정부의 4대강 물 관리 종합대책에 따르면, 수계 전체 오염원중 비점오염원이 차지하는 오염부하가 22~37%에 달하는 것으로 추정되고 있다. 하지만 이러한 중요성에도 불구하고 농업지역 비점오염물질 저감을 위한 대책은 논과 밭과 같이 농경지에 관한 것이 대부분이었으며, 축산은 관리 기준의 가장 기초라고 할 수 있는 지목분류기준에 조차 별도의 기준이 없는 실정이다. 가축분뇨공공처리시설과 가축분뇨자원화시설은 가축분뇨를 처리하여야 하는 점오염원이지만, 차량 운반시 발생되는 일부 분뇨와 처리장 세척 시 발생되는 일부 오염물질들이 비점오염원으로 작용하고 있으며 이에 대한 관리가 미흡한 실정이다. 따라서 본 연구에서는 가축분뇨공공처리시설과 가축분뇨자원화시설에서 강우시 발생되는 유출특성을 분석하였으며, 이를 통해 가축분뇨처리시설의 비점오염 관리 처리시설 설치 시에 중요한 기초자료로 활용하고자 한다. 본 연구에서는 경상북도 영천시, 경기도 용인시, 전라북도 정읍시, 강원도 횡성군 등 축산밀집 지역을 대상으로 연 5회 강우시 모니터링을 실시하였으며, 모니터링자료를 바탕으로 유량가중평균농도(Event Mean Concentration, EMC)를 산정하였다. 영천시 가축분뇨자원화시설의EMC 산정결과 평균 BOD 5.1 mg/L, TN 6.90 mg/L, TP 0.91 mg/L로 산정되었으며, 용인시 개별처리농가의 경우 BOD 6.8 mg/L, TN 3.74 mg/L, TP 1.04 mg/L로, 횡성군 가축분뇨공공처리장의 경우 BOD 4.5 mg/L, TN 3.56 mg/L, TP 1.60 mg/L로, 정읍시 가축분뇨공공자원화시설의 경우 BOD 4.3 mg/L, TN 6.82 mg/L, TP 0.48 mg/L로 산정되었다. BOD, TN은 영천시 가축분뇨자원화시설에서 가장 높게 나타났고, TP의 경우 횡성군 축산폐수공공처리장의 경우 높게 나타났다. 유출특성을 분석한 결과 가축분뇨자원화시설의 경우 대부분 콘크리트 기반으로 조성된 토지위에 조성되어 강우시 유량은 급격하게 상승하며, 강우가 종료되면 바로 감소하는 불투수층 지역의 특성을 나타났다. 본 연구에서 분석된 유츨특성과 EMC는 비점오염 처리시설이나 가축분뇨공공처리시설 설치시 기초데이터로 활용이 가능할 것으로 판단되며, 향후 가축분뇨처리시설의 지속적인 모니터링과 모니터링지점 확대로 자원화시설 강우유출수의 DataBase화를 통한 지속적인 연구 및 관리가 되어야 할 것으로 판단된다.

  • PDF

Biochemical Methane Potential of Agricultural Waste Biomass (농산 바이오매스의 메탄 생산 퍼텐셜)

  • Shin, Kook-Sik;Kim, Chang-Hyun;Lee, Sang-Eun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.903-915
    • /
    • 2011
  • Recently, anaerobic methane production of agricultural waste biomass has received increasing attention. Until now domestic BMP (Biochemical methane potential) studies concerned with agricultural waste biomass have concentrated on the several waste biomass such as livestock manure, food waste, and sewage sludge from WWTP (Waste water treatment plant). Especially, the lack of standardization study of BMP assay method has caused the confused comprehension and interpretation in the comparison of BMP results from various researchers. Germany and USA had established the standard methods, VDI 4630 and ASTM E2170-01, for the analysis of BMP and anaerobic organic degradation, respectively. In this review, BMP was defined in the aspect of organic material represented as COD (Chemical oxygen demand) and VS (Volatile solid), and the influence of several parameters on the methane potential of the feedstock was presented. In the investigation of domestic BMP case studies, BMP results of 18 biomass species generating from agriculture and agro-industry were presented. And BMP results of crop species reported from foreign case studies were presented according to the classification system of crops such as food crop, vegetables, oil seed and specialty crop, orchards, and fodder and energy crop. This review emphasizes the urgent need for characterizing the innumerable kind of biomass by their capability on methane production.

Application of a Geographically Weighted Poisson Regression Analysis to Explore Spatial Varying Relationship Between Highly Pathogenic Avian Influenza Incidence and Associated Determinants (공간가중 포아송 회귀모형을 이용한 고병원성 조류인플루엔자 발생에 영향을 미치는 결정인자의 공간이질성 분석)

  • Choi, Sung-Hyun;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • In South Korea, six large outbreaks of highly pathogenic avian influenza (HPAI) have occurred since the first confirmation in 2003 from chickens. For the past 15 years, HPAI outbreaks have become an annual phenomenon throughout the country and has extended to wider regions, across rural and urban environments. An understanding of the spatial epidemiology of HPAI occurrence is essential in assessing and managing the risk of the infection; however, local spatial variations of relationship between HPAI incidences in Korea and related risk factors have rarely been derived. This study examined whether spatial heterogeneity exists in this relationship, using a geographically weighted Poisson regression (GWPR) model. The outcome variable was the number of HPAI-positive farms at 252 Si-Gun-Gu (administrative boundaries in Korea) level notified to government authority during the period from January 2014 to April 2016. This response variable was regressed to a set of sociodemographic and topographic predictors, including the number of wild birds infected with HPAI virus, the number of wintering birds and their species migrated into Korea, the movement frequency of vehicles carrying animals, the volume of manure treated per day, the number of livestock farms, and mean elevation. Both global and local modeling techniques were employed to fit the model. From 2014 to 2016, a total of 403 HPAI-positive farms were reported with high incidence especially in western coastal regions, ranging from 0 to 74. The results of this study show that local model (adjusted R-square = 0.801, AIC = 954.5) has great advantages over corresponding global model (adjusted R-square = 0.408, AIC = 2323.1) in terms of model fitting and performance. The relationship between HPAI incidence in Korea and seven predictors under consideration were significantly spatially non-stationary, contrary to assumptions in the global model. The comparison between global Poisson and GWPR results indicated that a place-specific spatial analysis not only fit the data better, but also provided insights into understanding the non-stationarity of the associations between the HPAI and associated determinants. We demonstrated that an empirically derived GWPR model has the potential to serve as a useful tool for assessing spatially varying characteristics of HPAI incidences for a given local area and predicting the risk area of HPAI occurrence. Considering the prominent burden of HPAI this study provides more insights into spatial targeting of enhanced surveillance and control strategies in high-risk regions against HPAI outbreaks.

A Study on the Proposal of the Customized Package through the Priority Analysis of Agricultural Environment Conservation Practices (농업환경보전 실천기술 우선순위 분석을 통한 맞춤형 실천기술 패키지 제안 연구)

  • Son, Min-Hui;Lee, Seul-Bi;Lee, Kyun-Sik;Kim, Tae-Young
    • Journal of agriculture & life science
    • /
    • v.53 no.5
    • /
    • pp.153-165
    • /
    • 2019
  • This paper analyzes the priorities of introducing agricultural environmental conservation practices for the successful introduction of agricultural environmental conservation programs and promotes customized agricultural environment conservation practices packages suitable for the local environment. Agricultural environmental conservation practice consists of three fields: soil, water, and air, nine sub-fields, and 30 practice skills. Using the advantages of AHP and BWS appropriately for priority analysis, three areas and nine sub-fields are measured using AHP techniques, and the practical activities of each fields are measured by priorities using BWS techniques to enhance the differentiation and completeness of research. In addition, the criteria for evaluating priorities of practical activities used 'Environmental effectiveness' and 'Technical feasibility'. As a result of the priority evaluation, the 'Soil testing and reduction of fertilizer and livestock manure application' activities were evaluated as having the highest priority. Based on the results of the priorities for these practical activities, examples of customized practical activity packages by farming type and environmental conditions were presented.

Current Status and Perspectives of Quality Improvement in Sesame (참깨 품질 연구의 현황과 문제점 및 전망)

  • Lee, Bong-Ho;Lee, Jung-Il;Park, Rae-Kyeong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.s01
    • /
    • pp.86-97
    • /
    • 1988
  • Sesame(Sesamum indicum L.) is probably the most ancient oilseed crop known in the world. The seed of sesame is used in a variety of ways as food. The whole seed may be eaten raw, either roasted or parched, or fed to birds and stock. Sesame oil is used as a salad or cooking oil, in shortening, margarine and in the manufacture of soap. Minor uses are as a fixative in the perfume industry and formerly as a carrier for fatsoluble substances in pharmaceuticals such as penicillin. One of the minor constituents of sesame oil, sesamin, is used for its synergistic effect in pyrethrin insecticides, in addition of a small quantity of this substance markedly increases the effectiveness of fly sprays. The meal remaining after oil extraction can be used as and animal feed-stuff or as manure. In general sesame meal is considered to be equal to cottonseed or soybean meal as a protein supplement for livestock and poultry. It is especially high in certain amino-acids such as methionine, which is low in soybean meal, and thus can be combined with it or similar meal to form a more balanced ration. An attempt to summarize the literature review on quality improvement of sesame was made to discuss the accomplishments of the past and perspectives in the future. The reviews on quality improvement of sesame were mainly discussed in connection with the cultural practices and genetic informations in current status. The emphasis focussed on environmental variation of quality in cultural practices, such as harvest time, variety by location, climatic condition, fertilizer application, and growth regulator treatment. On the genetic variation of quality, it was discussed on variety background, mutation breeding, correlations, and inheritance of quality related characteristics. It also was discussed on relationship between quality and plant traits, storage condition or period, and seed coat color. Moreover, current research status were reviewed on some minor elements such as sesamin, oxalic acid, and trypsin inhibitor. As a results of the review, the lack of an effort to quality improvement in each utilization area was indicated as a problem area. More active efforts for the improvement of quality were also insufficient to incorporate the available genes for quality in breeding method or collection and analysis of breeding materials. Therefore, researches in the future would be recommended to emphasize on these problem areas.

  • PDF

Redeveloped Work Criteria and Cost Unit in Grassland Establishment (초지조성방법에 따른 작업항목의 재설정 및 초지조성단가 추정)

  • Yoon, Byung Ku;Kim, Ji Yung;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • In this study, the appropriate unit cost in grassland establishment was redeveloped by the grassland establishment method and work criteria. The grassland establishment method was divided into tillage establishment (all logging) and no-tillage establishment (all logging and partial logging). The price for the work criteria by the establishment method was presented for each permission/authorization and establishment work. In permission/authorization for grassland establishment, the cost of each work criteria was of environmental impact (small scale environmental impact) assessment, disaster impact assessment, cadastral serving fee, forest survey, and connection fee for control of mountainous districts. In establishment was of logging, cleaning/gruffing, plowing/soil preparation, seeding, fertilization, livestock manure compost, seed, herbicide, labor cost (fertilizer, seed and herbicide), soil consolidation, cattle trail, and fence. The unit cost of grassland establishment was KRW 115,894,212 for the tillage establishment, and KRW 110,281,572 and KRW 106,680,122 for the all and partial logging of the no-tillage establishment, respectively. The current study redeveloped the establishment method, work criteria, and estimation of the unit cost of grassland establishment. It can be usefully used to carry out government projects to support related to establishment and maintenance of grassland.

Ammonia Gas Emission Factor at different Application Rate of Urea in Chinese Cabbage Cultivation (배추 재배지에서 요소시비에 따른 암모니아 배출계수 산정)

  • Lee, Su-Lim;Lee, Jae-Hoon;Rho, Jun-Suk;Park, Yu-Jin;Choi, Ah-Young;Kim, Sin-Sil;Lee, Seul-Rin;Park, Jong-Hwan;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • BACKGROUND: The main source of ammonia in soils, South Korea is agricultural emissions (e.g., fertilizer application and livestock manure), with the recent emission inventories reporting them to be approximately 80% of the total emissions. Ammonia as a pollutant is originated largely from agricultural activity and is an important contributor to air quality issues in South Korea. The importance of ammonia in agricultural land is also emerging. In this study, the characteristics of ammonia emission from Chinese cabbage cultivation fields with application rates of urea sere were evaluated. METHODS AND RESULTS: The ammonia emission characteristics were investigated at the different urea application rates (0, 160, 320, and 640 kg ha-1) and the ammonia emission factor in the Chinese cabbage cultivation field was calculated. As application rate of urea application increased, ammonia emissions increased proportionally. In 2020 and 2021, cumulative ammonia emissions with urea 320 kg ha-1 treatment were 39.3 and 35.2 kg ha-1, respectively for 2020 and 2021. When urea fertilizer was applied, the ammonia emission factors were 0.1217 and 0.1358 NH4+-N kg N kg-1 in 2020 and 2021, respectively. CONCLUSION(S): Ammonia emissions increased as application rate of urea increased, and the average ammonia emission factor of the Chinese cabbage cultivation field for two years was 0.129 NH4+-N kg N kg-1.

Influences of Bulking Materials on Sustainable Livestock Mortality Composting (부자재 종류가 친환경적 사축퇴비화에 미치는 영향)

  • Won, Seung Gun;Park, Ji Young;Cho, Won Sil;Kwag, Jung Hoon;Choi, Dong Yoon;Ahn, Hee Kwon;Ra, Chang Six
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.483-488
    • /
    • 2013
  • To develop a sustainable composting method for livestock mortality, a natural aeration-composting process was designed and the influences of bulking materials on the mortality composting process were studied. Bulking materials (e.g., compost, swine manure, sawdust, and rice husks), easily supplied at the scene of an animal mortality outbreak, were tested in this research. A lab-scale composting system (W34 ${\times}$ L60 ${\times}$ H26 cm) was made using 100 mm styrofoam, and natural aeration was achieved through pipes installed on the bottom of the system. Four treatments were designed (compost, compost + swine feces, sawdust, and rice husks treatment groups) and all experiments were done in triplicates. During composting for 40 days, no leachate was observed in compost and sawdust treatment groups, whereas 18 and 8.2 ml leachate/kg-mortality was emitted from the compost + feces and rice husks treatment groups, respectively. Dimethyl disulfide (DMDS) emission during the composting was very low in all treatment groups, possibly due to the bio-filtering function of the compost cover layer on the pile. The mortality degradability in compost, compost + feces, sawdust, and rice husks groups was 25.3, 25.8, 13.5, and 14.5%, respectively, showing significantly higher levels in compost and compost + feces groups (p<0.05). Also, only the compost + feces group produced enough heat (over $55^{\circ}C$) and lasted for 7 days, indicating that bio-security cannot be guaranteed without feces supplementation.

Survey on Chicken Housing Types in Different Farm Scale and Region (양계농가의 사육규모별, 지역별 계사 시설현황 분석)

  • Choi, H.C.;Kham, D.H.;Na, J.C.;Bang, H.T.;Yu, D.J.;Suh, O.S.;Song, J.I.;Jeon, B.S.;Jeon, J.H.;Yoo, Y.H.;Lee, S.C.;Kim, J.S.;Lee, D.H.
    • Journal of Animal Environmental Science
    • /
    • v.15 no.3
    • /
    • pp.189-198
    • /
    • 2009
  • This survey was conducted to investigate the situation of housing type in poultry farms in Korea. The number surveyed among the farm size over 30,000 heads was 1,965 farms. Poultry housing types of windowless, open sided, vinyl house type were 19.0, 47.7, 19.8%, respectively. Waterers of nipple, bell, and 8 feet trough used in smaller than 50,000 heads of poultry farm were 40.6, 11.3 and 42.8%, respectively. But the bigger farm in the farm size of over 100,000 heads used more nipple waterer. Feeders of disk, hopper and chain used in poultry farm were 54.5, 16.3, 15.8%, respectively. Manure collecting system of scraper and belt was 29.4, 71.5 %, respectively. Ventilation systems of natural ventilation, natural + mechanical ventilation, mechanical ventilation were 40.5, 39.8, 20.7%, respectively.

  • PDF

Characteristic of Odorous Compounds Emitted from Livestock Waste Treatment Facilities Combined Methane Fermentation and Composting Process (메탄발효와 퇴비화 공정이 연계된 가축분뇨 처리시설에서 발생되는 악취물질 특성 조사)

  • Ko, Han Jong;Kim, Ki Youn;Kim, Hyeon Tae;Ko, Moon Seok;Higuchi, Takasi;Umeda, Mikio
    • Journal of Animal Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.391-400
    • /
    • 2008
  • Odor management is significantly concerned with sustainable livestock production because odor nuisance is a primary cause for complaint to neighbors. This study was conducted to measure the concentration of odorous compounds, odor intensity, and odor offensiveness at unit process in animal waste treatment facility combined composting and methane fermentation process by an instrumental analysis and direct olfactory method. Ammonia, sulfur-containing compounds, and volatile fatty acid were analyzed at each process units and boundary area in summer and winter, respectively. Higher concentration of odorants occurred in the summer than in the winter due to high ambient temperature. The maximum concentration of odorants was detected in composting pile when mixed manure was being turned followed by inlet, curing, outlet, and screen & packing process. Highest concentration of detected odorous compounds was ammonia ranging from 3.4 to 224.7 ppm. Among the sulfur-containing compounds measured, hydrogen sulfide was a maximum level of 2.3 ppm and most of them exceeded reported odor detection thresholds. Acetic acid was the largest proportion of VFA generated, reaching a maximum of 51 to 89%, followed by propionic and butyric acid at 1.9 to 35% and 1.8 to 15%, respectively. Malodor assessment by a human panel appeared a similar tendency in instrumental analysis data. Odor quotient for predicting major odor-causing compounds was calculated by dividing concentrations measured in process units by odor detection thresholds. In the composting process, hydrogen sulfide, ammonia, dimethyl sulfide, and methyl mercaptan were deeply associated with odor-causing compounds, while the major malodor compounds in the inlet process were methyl mercaptan, hydrogen sulfide, and butyric acid.