• Title/Summary/Keyword: Livestock Environment

Search Result 711, Processing Time 0.023 seconds

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

  • Lee, Tae-Hun;Jang, Jae Kyung;Kim, Hyun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2010-2018
    • /
    • 2017
  • Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment. Using a central composite design, this study evaluated how temperature and light irradiance are associated with $CO_2$ capture and organic carbon respiration through biomass production and ammonia removal kinetics. By conducting regressions on the experimental data, response surfaces were created to suggest proper ranges of temperature and light irradiance that mixotrophs can beneficially use as two types of energy sources. The results identified that efficient mixotrophic metabolism of Chlorella sorokiniana for organics and inorganics occurs at the temperature of $30-40^{\circ}C$ and diurnal light condition of $150-200{\mu}mol\;E{\cdot}m^{-2}{\cdot}s^{-1}$. The optimal specific growth rate and ammonia removal rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test verified that the organic removal rate was $105mg\;COD{\cdot}l^{-1}{\cdot}d^{-1}$. These results support the development of a viable option for sustainable treatment and effluent quality management of problematic livestock wastewater.

Characteristics of Pollutant Concentration from Livestock Wastewater Effluent Combined with Stormwater Runoff (강우시 및 건기시 축산지역에서 배출되는 오염물질의 유출특성 비교)

  • Tobio, Jevelyn Ann S.;Maniquiz-Redillas, Marla C.;Lee, Yuwha;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.896-901
    • /
    • 2012
  • In this research, the levels of concentrations from the junction of effluent from wastewater treatment plant during dry days and combined with runoff from the surrounding 11 ha livestock catchment area during wet days were determined to investigate the relationships of the concentration of various pollutants such as particulates, nutrients and organics originating from point and nonpoint sources. Manual sampling was conducted from October 2008 to December 2011 during dry and wet days. Based on the results, the flow rates and concentrations of most pollutant parameters were increased during wet days. It was found out that the effluent wastewater combined with stormwater runoff has low BOD to TN/TP ratio and high TN/TP to BOD ratio. Therefore, it is needed to employ other treatment methods to effectively manage the wastewater and reduce the pollutant discharge to receiving water bodies.

Water Quality Management using WASPS & WASP Builder for a Basin of an Agricultural Reservoir (WASP5 & WASP Builder을 이용한 농업용저수지 유역의 수질관리)

  • Chung, Paul-Gene;Goh, Hong-Seok;Hyun, Mi-Hee;Lee, Eun-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.422-431
    • /
    • 2004
  • Water quality modeling was performed for the purpose of diagnosis and prediction of water quality in Gyoung Choen reservoir, using EUTR05/WASP Build model. WASP Builder is capable of visual display in window and it has an advantage of updating and modification for data. Field data of 1992, Spring, Summer, and Fall, were used to calibrate model and these results were validated using data of 2000, Spring, Summer, and Fall. The reservoir was divided into 4 epilimnion segments. Water quality system for modeling were consist of BOD, Chlorophyll-a, DO, $NH_3-N$, $NO_3-N$, T-N, $PO_4-P$, T-P. The results of water quality modelling using EUTR05/WASP Builder, a range of the Correlation for calibration of BOD, T-N, T-P, and Chlorophyll-a according to three seasons are 0.63~0.90, 0.81~0.97, 0.75~0.98, and 0.77~0.98 respectively. And the correlation between simulated and observed values for verification of BOD, T-N, T-P, and Chlorophyll-a according to three seasons are 0.93, 0.94, 0.81, and 0.80 respectively. Among the pollutant sources for a basin of the Gyoung Choen reservoir, generated amount of livestock is the highest and BOD, T-N, T-P of generated loading percentage are 94%, 81%, and 95%. So, we suppose that inflow load amount will decrease 50% and increase 50% only livestock about current load amount. If increasing load amount of livestock 50% in segment 2 and 3, BOD, T-N, and T-P simulated increasing to range of $0.02~0.15mg/{\ell}$, $0.029~0.08mg/{\ell}$, $0.011~0.029mg/{\ell}$ in comparison with current water quality

The Fractionation Characteristics of Organic Matter in Pollution Sources and River (오염물질 배출원과 하천에서의 유기탄소 분포 특성)

  • Kim, Ho-Sub;Kim, Sang-Yong;Park, Jihyung;Han, Mideok
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.580-586
    • /
    • 2017
  • The fractionation characteristics of organic matter were investigated in inflow and effluent of each other pollution sources and river. While the DOC/TOC ratio in the influent of public sewage treatment plant and livestock disposal facilities was above 0.58, the POC/TOC ratio of human livestock Night soil treatment plant and stormwater runoff was more than 0.7. The TOC removal efficiency of public sewage treatment plant and human livestock Night soil treatment plant were 88.5 % and 99.6 %, respectively. Although the concentration distribution of organic matter pollution most of total organic carbon (TOC) in effluent of pollution sources accounted for dissolved organic carbon (DOC) type (DOC/TOC ratio >0.89) and Refractory-DOC (RDOC)/TOC ratio was higher (>0.65). The fractionation characteristics of organic matter in river were similar with that of sewage treatment plant and TOC concentration showed the positive correlation with DOC ($r^2=0.93$) and RDOC ($r^2=0.89$) concentration. The decay rate of Labile DOC (LDOC) (avg. $0.128day^{-1}$) was higher than labile particulate organic carbon (LPOC) ($0.082day^{-1}$), while that of DOC ($0.008day^{-1}$) was lower than POC ($0.039day^{-1}$) (paired t-test, p < 0.001, n = 5). These study results suggested that it should consider important both TOC and DOC as the target indicator to control refractory organic matter in pollution sources.

A Study on the Regulatory Effect of the Special Water Preservation Area of Lake Paldang Watershed Based on Long-Term Variation of Pollutant Source and Water Quality (수질과 오염원의 장기적 변화를 통한 팔당호 상수원수질보전 특별대책지역 규제효과 분석)

  • Kim, Ho-Sub;Park, Yun-Hee;Kim, Yong-Sam;Kim, Sang-Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.1
    • /
    • pp.43-54
    • /
    • 2019
  • The objective of this study was to assess the effect of policies on water quality management based on the changes in pollutants and water quality in Special Water Preservation Area (SWPA) of Lake Paldang watershed from 1990 to 2016. The population, total sewage and flow rate of wastewater in SWPA continuously increased from 1990 to 2016, while the location of new facilities for industrial and livestock facilities has been restricted. However, unlike the buffer zone in which industrial and livestock facilities were continuously reduced after implementing of TMDL, it was found that the effect of land-use regulations on industrial and livestock facilities in SWPA were mitigated by the increase in the size of large facilities. Since 1999 when the emission standard of public sewage treatment plants (STP) was changed, the water quality of Lake Paldang has increased despite the increase of pollutant source. Since emission standard of STP changed in 2012 (BOD 5 mg/L, TP 0.2 mg/L), BOD concentration in Lake Paldang has also improved to the level of water quality in the early 1990s where as TP concentration has remained at its lowest since 1990. BOD and TP average discharge concentration of 43 STP (${\geq}500m^3/day$) in 2016 have been maintained $1.7{\pm}0.7mg/L$ and $0.06{\pm}0.02mg/L$ respectively. While the discharged load of STP in SWPA was decreased by the concentration management, the contribution rate to the total discharged load of non-point pollutants increased to 70 % in 2015, and the contribution rate to the point discharged load of individual treatment facilities increased to 80 %.

Odor emission characteristics in anaerobic high temperature burial composting of swine carcasses (돼지 사체의 혐기적 고온 매몰퇴비화법에서의 악취발생 특성)

  • Yang, Woo-Young;Lee, Jin-Young;Choi, Yeon-Ju;Ryu, Hee-Wook;Chae, Jeong-Seok;Jeon, Jun-Min
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.187-198
    • /
    • 2017
  • It is very important to treat infected livestock carcasses safely and quickly. In this study, the degradation characteristics and odor generation characteristics of carcasses were investigated during the treatment of swine carcasses using the anaerobic burial composting method. While the carcasses were decomposed, the temperature remained high, at $40{\sim}55^{\circ}C$ on average, and most of the carcasses were decomposed rapidly. The major odor-contributing substances in the buried composting method are sulfuric odor substances such as $H_2S$, $CH_3SH$, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), and the odor contribution of these substances is 93~99%. Among them, $CH_3SH$, which accounts for about 56~89% of odor contribution, was the most representative indicator substance. Despite the anaerobic digestion process, the methane concentration in the digestion process was as low as 0.5~0.8% at the burial point of the carcass. The odor and methane produced during the decomposition of the carcasses decreased considerably during the discharge to the surface layer through the buried layer consisting of compost. These results suggest that anaerobic high temperature burial composting is one of the most useful methods to treat carcasses of infected livestock.

Estimation of Pollution Using Load Duration Curves at Streams in Sapgyo Watershed (부하지속곡선을 이용한 삽교호수계 지류하천의 오염원인 분석)

  • Cho, Jeongho;Kim, Hongsu;Cho, Byunguk;Park, Sanghyun;Lee, Mukyu;Lee, byeonggu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.175-189
    • /
    • 2021
  • In this study, 48 streams in the Sapgyo Watershed were selected, and the Load Duration Curves (LDC) were drawn up for each stream using water quality and flow monitoring over the last three years (2018-2020), and it was evaluated whether the target water quality was achieved for each flow section. As a result of evaluating whether or not the target water quality exceeded according to the LDC, it was found that 22 rivers exceeded the target water quality. Five rivers exceeded the target water quality due to point pollutant sources, 13 rivers exceeded the target water quality due to non-point pollutant sources, and 4 rivers exceeded the target water quality due to both point and non-point pollutant sources. Among the rivers that exceeded the target water quality due to point pollutant sources, which included domestic sewage of the untreated population, there is a need to reduce the influx of polluted loads by the untreated population. The use of eco-friendly fertilizers is recommended for rivers with a relatively high farmland ratio among rivers exceeding the target water quality due to non-point pollutant sources, and installation of boiling point reduction facilities that can reduce the amount of polluted load introduced during rainfall or manage water shores. In rivers with a large number of livestock breeding heads, the livestock houses located in these rivers need to be preferentially transferred to livestock manure treatment plants. Due to the high ratio of land area because of urbanization, initial rainwater treatment facilities are required to reduce the amount of pollutant load flowing into the river through the impermeable layer during rainfall.

Analysis of Groundwater quality and Contamination factors in Livestock Region, South Korea (국내 농축산단지 내 지하수 수질특성 및 오염인자 상관관계 분석)

  • Yoon, JongHyun;Park, Sunhwa;Choi, HyoJung;Kim, Deok Hyun;Kim, Moonsu;Yun, Seong-Taek;Kim, Young;Kim, Hyun-Koo
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.98-105
    • /
    • 2020
  • In this study, the concentrations of some of the important ionic contaminants in groundwaters of national monitoring network in Korea were identified, and their correlation to nitrate concentration was investigated. Approximately 80% of the groundwater samples were found to be as Ca2+-(Cl-+NO3-) type groundwater with the concentration ranges [minimum to maximum values, median (mg/L)] of Ca2+[0.1~228.2, 19.7], Mg2+[0.1~53.2, 5.1], K+[0.1~50.8, 1.9], Na+[1.5~130.5, 18.1], NO3--N[0.1~73.4, 9.3], NH4+-N[0.0~53.9, 0.3], Cl-[3.1~482.6, 24.0], and SO42-[2.8~101.6, 7.0]. The prevalence of Ca2+-(Cl-+NO3-) type suggest that the composition of groundwaters were greatly influcenced by chemical fertilizers and animal manure, Correlation analyses indicated threre was positive correlation between NO3--N concentration and ionic species including Cl-, Ca2+, Mg2+, and Na+. In particular, the correlation was strongest for Cl- and NO3--N, suggesting that groundwaters largely impacted by agricultural and livestock breeding activities tend to contain high levels of Cl-.

Correlation Analysis of Serum Hormones and Components in Hanwoo during Slaughtering Process (한우 도축시 혈청 호르몬과 혈액 성분의 상관 관계 분석)

  • Jeon, G.J.;Kim, M.J.;Cho, K.H.;Ryu, J.W.;Kim, I.C.;Choi, G.K.;Jung, H.Y.;Lee, H.K.
    • Journal of Embryo Transfer
    • /
    • v.21 no.4
    • /
    • pp.287-297
    • /
    • 2006
  • Concentration of hormones and blood components at the last fatting stage was changed before slaughter in Hanwoo steers and bulls. Two months before slaughter and shipment, concentration of cortisol and creatinine was increased, but that of calcium was decreased. Concentration of insulin growth factor-1 (IGF-1) was decreased after shipment, and inorganic phosphorus (IP) was decreased at slaughter. It is unclear that changes of concentration in between 2 months before slaughter and shipment were either caused by aging or stresses (abstinence, environmental change, blood drawing, and shipment). Changes of blood concentration between shipment and slaughter may be accounted for overall responses from abstinence, shipment, and unfamiliar environment. A positive correlation between 2 months before slaughter and before shipment was detected for IGF-1, total protein (TP), albumin, creatinine, high density lipoprotein cholesterol (HDLC), and globulin in steers, and creatinine and globulin in bulls. A positive correlation between 2 month before slaughter and slaughter was detected for IGF-1, blood urea nitrogen (BUN), IP and HDLC in steers, and creatinine in bulls. A positive correlation between before shipment and slaughter was detected for testosterone, IGF-1, creatinine, triglyceride, HDLC and globulin in steers, and TP, creatinine, HDLC and globulin in bulls.

A Study on the possibility of reuse foodwaste ferment as a bulking agent in livestock waste composting (음식물쓰레기의 발효생산물을 가축분뇨 퇴비화에서 수분조절제로의 활용가능성에 관한 연구)

  • Kim, Sung-Bum;Choi, Hoon-Gun;Kim, Quy-Youn;Lee, Seoung-Ki;Song, Young-Il;Kim, Hyun-Jung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.58-66
    • /
    • 2004
  • The purpose of this study is to examine the possibility of reuse fermented foodwaste as a bulking agent in livestock waste and foodwaste composting. Aerobic composting device was added to the following sample : Foodwaste + Sawdust, Livestock feces+Sawdust, Foodwaste + Ferment, Livestock feces + Ferment. Temperature, pH, OM/N ratio, moisture, heavy metals, and microbes were measured in process of aerobic composting. The results of this study are following. 1. The composting period is determined in 16~24days, according to the change of temperature and OM/N ratio. 2. The salinity contents in compost of livestock waste and foodwaste ferment is about 0.5%, which can be solved the problems of salinity contents in foodwaste composting. 3. The proper ratio of livestock waste composting is 40% of cow feces to 60% of foodwaste ferment. 4. Processing expense of aerobic composting of foodwaste and sawdust is 40 won/kg composting expense of foodwaste and ferment is 30 won/kg. Fermented product composting can cut down the expense of bulking agent than others.

  • PDF