• Title/Summary/Keyword: Livestock Environment

Search Result 711, Processing Time 0.028 seconds

A Study on the Effect of Abelmoschus Manihot Jinhuakui Extract on Odor Reduction

  • Gok Mi Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.1
    • /
    • pp.281-286
    • /
    • 2024
  • With the commercialization and full-timeization of the livestock industry, civil complaints continue to increase, and the livestock industry is facing a crisis due to social problems such as odor caused by livestock manure, soil pollution, water pollution, and environmental pollution. In order to increase productivity in livestock farms, the amount of livestock manure generated is increasing due to excessive use of protein feed and high-density breeding environment, and complaints such as odor and water pollution due to management problems are increasing rapidly. Livestock odor has emerged as a serious social problem, and due to growing complaints, conflicts between the Ministry of Agriculture and Forestry and the Ministry of Environment are even causing the livestock industry to lower its status. There is an urgent need for solutions to identify problems in the livestock industry and improve policies. This study aims to develop a " Abelmoschus Manihot Jinhuakui " brand that can improve the intestinal environment of livestock, reduce odors caused by livestock excrement, and improve the productivity of livestock farms in order to improve the increasingly serious odor problem in livestock sites. For Jeju livestock farms, which place more importance on the environment by securing tourists, eco-friendly feed additives were applied to the experiment, the results were derived, and the focus was on solving fundamental problems of odor generation through the development and packaging of feed additive brands. We aim to fundamentally solve the odor problem of domestic livestock farms, secure eco-friendly livestock farms, and contribute to reducing livestock odors and increasing productivity through research results that reduce ammonia levels in each livestock farm.

A Study on the Development of the Design of Industrial Animal Biodegradation Handler for Environmentally Friendly Use

  • Kim, Gokmi
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.151-157
    • /
    • 2021
  • Livestock farmers are using animal carcasses to dispose of the carcasses of livestock that have died of natural causes or disease. Most of the existing livestock carcass processors are mechanical in their structure without considering the environment. It has a function of sterilizing dead bodies at high pressure after processing them and causes environmental problems such as carbon monoxide emissions. If livestock carcasses occur, livestock farmers have to purchase their own livestock carcasses or entrust them to the outside world, which is costly. For this reason, the possibility of environmental pollution, infectious diseases, and spread has been increased recently by frequent dumping of dead bodies. The carcass of livestock mixed with manure not only serves as a medium for infectious diseases but also needsto be buried on a large scale as foot-and-mouth disease and avian influenza spread. As a result, the possibility of environmental pollution, such as contamination of groundwater, is increasing, so research is needed to protect and improve the environment. We aim to improve the process of processing livestock carcasses and purify the agricultural environment through development results on the form, structure and function of eco-friendly livestock carcasses. Its shape is applied with naturalshapessuch asstones and seeds. The material used in the dead body processis a brown beggar biocouple and is applied with an eco-friendly industrial animal recycling process. As a result of the study, it is expected to improve odors and the environment, and to be used as data to improve and help the livestock industry in the future.

Ubiquitous Integration Monitoring System for the Feeding and Environment Management of Livestock Production (가축 생산성 향상을 위한 유비쿼터스 통합 모니터링 시스템)

  • So, Sunsup;Kim, Byeongho;Eun, Seongbae;Jun, Jungho
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.75-88
    • /
    • 2012
  • This research aims to propose a ubiquitous integration monitoring system for the feeding and environment management of livestock production. The integration monitoring system proposed in this research is based on an integrated platform, and consists of livestock shed environment monitoring system, livestock monitoring system, livestock remote medical treatment, and feeding and management system. This research conducts the followings. First, we review the previous researches on livestock related ubiquitous monitoring system to examine the factors to be considered in the proposed system. Then, we design the system and implement the prototype to demonstrate the possibility of the application of this system to real stockbreeding environment.

Design of Smartfarm Environment Controller Using Fuzzy Control Method and Human Machine Interface for Livestock Building (퍼지 제어법과 HMI를 이용한 축사용 스마트팜 환경 제어기 설계)

  • Byeong-Ro Lee;Ju-Won Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.129-136
    • /
    • 2022
  • The most important part of the smart livestock building system is to maintain a breeding environment so that livestock can grow to high quality despite changes in the internal and external atmospheric environment. Especially, it is very important to maintain the temperature and humidity in the livestock building because various diseases occur during the summer and winter. To manage the environment suitable for livestock, a smartfarm system for livestock building is applied, but it is very expensive. In this study, we propose a hardware design and control method for low cost system based on HMI and fuzzy control. To evaluate the performance of the proposed system, we did a simulation experiment in the atmospheric conditions of summer and winter. As a result, it showed the performance of minimizing the temperature and humidity stress of livestock. And when applied to the livestock building, the proposed system showed stable control performance even in the change of the external atmospheric environment. Therefore, as with these results, if proposed system in this study is applied to the smart farm system, it will be effective in managing the environment of livestock building.

The control method on environment in pen using artificial neural network (인공신경망을 이용한 축사 환경 제어 방안)

  • Min, J.H.;Huh, M.Y.;Park, J.Y.
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.563-566
    • /
    • 2017
  • In order to prevent livestock diseases and produce the high quality livestock products in the livestock industry, it is necessary to manage the conditions of the livestock farms in the optimal condition. Therefore, these days the research on livestock growth models that analyze the factors of the air environment, the breeding environment, and the numerical rules of livestock in vivo is being carried out to improve and manage the environment in which livestock are kept. However, conventional models of growth are not sufficient to support the decision-making to control complex environment in pen by analyzing and interpreting air environment and breeding environment in a complex way. In this paper, we propose a method to control the complex environment in pen by using artificial neural network model based on biological information, air environment, breeding environment and production information.

  • PDF

Smart Livestock Research and Technology Trend Analysis based on Intelligent Information Technology to improve Livestock Productivity and Livestock Environment (축산물 생산성 향상 및 축산 환경 개선을 위한 지능정보기술 기반 스마트 축사 연구 및 기술 동향 분석)

  • Kim, Cheol-Rim;Kim, Seungchoen
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.133-139
    • /
    • 2022
  • Recently, livestock farms in Korea are introducing data-based technologies to improve productivity, such as livestock environment and breeding management, safe livestock production, and animal welfare. In addition, the government has been conducting a smart livestock distribution project since 2017 through the modernization of ICT-based livestock facilities in order to improve the productivity of livestock products and improve the livestock environment as a policy. However, the current smart livestock house has limitations in connection, diversity, and integration between monitoring and control. Therefore, in order to intelligently systemize all processes of livestock with intelligent algorithms and remote control in order to link and integrate various monitoring and control, the Internet of Things, big data, artificial intelligence, cloud computing, and mobile It is necessary to develop a smart livestock system. In this study, domestic and foreign research trends related to smart livestock based on intelligent information technology were introduced and the limitations of domestic application of advanced technologies were analyzed. Finally, future intelligent information technology applicable to the livestock field was examined.

Prevalence and Characterization of Pathogenic Escherichia coli Isolated from the Livestock Environment in Chungcheongnam-do Province of South Korea (충남지역 농장환경에서 분리된 병원성대장균 분포 및 특성 분석)

  • Junhyuk Park;Kyung A Yun;Youngeun Ko;Mi Jang;Ok Kim
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.4
    • /
    • pp.274-281
    • /
    • 2024
  • Background: One of the major causes of pathogenic E. coli is the feces of infected livestock, and the management of the livestock environment is necessary to prevent pathogenic E. coli. Objectives: The prevalence of pathogenic E. coli was identified from livestock environments, and the molecular characteristics and antibiotic resistance profiles of the isolated pathogenic E. coli strains were analyzed. Methods: In 2022 and 2023, nine points of livestock houses at sites in Chungcheongnam-do Province were selected, and 100 cow feces or soil samples around the livestock houses were collected once per month. Pathogenic E. coli was isolated by selective culture and identified using multiplex PCR. Antibiotic resistance was tested on the isolated strains by using VITEK-2, and candidate strains were selected to perform 16s rRNA sequencing and phylogenetic analysis. Results: A total of 100 samples were tested, and 60 pathogenic E. coli strains were isolated. Of these, 45 and 15 isolates were determined to be single and hybrid pathogenic E. coli , respectively. Among the 15 hybrid pathogenic E. coli strains, eight, five, and two strains were respectively identified as EHEC/ETEC, EHEC/EPEC, and EHEC/ETEC/EPEC hybrids. All 45 isolates showed resistance to at least one antibiotic, and they were susceptible to cefotaxime, amikacin, nalidixic acid, and ciprofloxacin. The highest resistance was against cefalotin, tetracyclin, and ampicillin (20.0%~58.3%). The 16s rRNA sequences of candidate isolates revealed nucleotide sequence identities of 99.1% to 100%. Conclusions: In order to manage pathogenic E. coli from the One Health animal environment perspective, the characteristics of the occurrence of pathogenic E. coli from the livestock environment and molecular biology and antibiotic resistance to isolated strains were analyzed. In order to prevent and manage the occurrence of pathogenic E. coli, these monitoring studies must be continuously conducted.

Characterization of Microbial Community Changes in Process Affected by Physicochemical Parameters During Liquid Fertilization of Swine Waste

  • Shin, Mi-Na;Kim, Jin-Won;Shim, Jaehong;Koo, Heung-Hoe;Lee, Jai-Young;Cho, Min;Oh, Byung-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.173-181
    • /
    • 2013
  • Livestock wastes are considered as major environmental pollutants because they contain high concentration of organic materials. In 2001, The Environmental Department reported that stock farmers were increasing as 5.1%/year, which resulted in a gradual increase in livestock wastes generation. The direct disposal of livestock wastes create several environmental problems. Thus, several countries banned the disposal of livestock wastes in environment including aquatic systems. Recently, aeration-based liquid fertilization was considered as potential way for the disposal of livestock wastes. In this study, next generation sequencing (NGS) analysis was used to understand the microbial community changes during liquid fertilization of livestock wastes. Microbial community was compared with liquid fertilizer physicochemical analysis such as $BOD_5$, $COD_{Mn}$ pH, N (Nitrogen), P (Phosphorus), K (Potassium) etc. The physicochemical parameters and bacterial community results pave the way for producing effective livestock-based fertilizer. By comparing the physical characteristics of the manure with microbial community changes, it is possible to optimize the conditions for producing effective fertilizer.

A Study on the Nutrient Composition and Heavy Metal Contents in Livestock Manure Compost·Liquefied Fertilizer (가축분뇨 퇴비·액비의 비료성분 및 중금속 함량에 관한 연구)

  • Ahn, Taeung;Kim, Dongmin;Lee, Heungsoo;Shin, Hyunsang;Chung, Eugene
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.306-314
    • /
    • 2021
  • The application of organic fertilizer could be accompanied by potential hazards to soil and humans due to trace metals. Livestock manure compost·liquefied fertilizer is a well-established approach for the stabilization of nutrients and the reduction of pathogens and odors in manures, which can be evaluated as compost·liquefied. In this study, the livestock manure compost·liquefied fertilizers produced at 333 liquid manure public resource centers and liquid fertilizer distribution centers were collected from May to December 2019. The nutrient content (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content were investigated. The livestock manure compost·liquefied fertilizer was measured using a mechanical maturity measurement device. The organic matter, arsenic, cadmium, mercury, lead, chromium, copper, nickel, zinc, E. coli (O157:H7), Salmonella, etc. of the livestock manure compost·liquefied fertilizers were analyzed. The average heavy metal content in the livestock manure compost·liquefied fertilizer was as follows: Cr 2.9 mg/kg (0.2~8.7 mg/kg), Cu 20.4 mg/kg (1.6~74.1 mg/kg), Ni 1.3 mg/kg (0.4~4.2 mg/kg), and Zn 79.8 mg/kg (3.0~340.7 mg/kg). Although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to standardize livestock manure compost·liquefied fertilizer in order to facilitate efforts to turn livestock manure into useful resources.

Distribution of Antibiotic-Resistant Bacteria in the Livestock Farm Environments

  • Kim, Youngji;Seo, Kun-Ho;Kim, Binn;Chon, Jung-Whan;Bae, Dongryeoul;Yim, Jin-Hyeok;Kim, Tae-Jin;Jeong, Dongkwan;Song, Kwang-Young
    • Journal of Dairy Science and Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The surroundings of livestock farms, including dairy farms, are known to be a major source of development and transmission of antibiotic-resistant bacteria. To control antibioticresistant bacteria in the livestock breeding environment, farms have installed livestock wastewater treatment facilities to treat wastewater before discharging the final effluent in nearby rivers or streams. These facilities have been known to serve as hotspots for inter-bacterial antibiotic-resistance gene transfer and extensively antibiotic-resistant bacteria, owing to the accumulation of various antibiotic-resistant bacteria from the livestock breeding environment. This review discusses antibiotic usage in livestock farming, including dairy farms, livestock wastewater treatment plants as hotspots for antibiotic resistant bacteria, and nonenteric gram-negative bacteria from wastewater treatment plants, and previous findings in literature.