• 제목/요약/키워드: Liver-specific function

검색결과 94건 처리시간 0.021초

Outcomes of endoscopic submucosal dissection for superficial esophageal neoplasms in patients with liver cirrhosis

  • Young Kwon Choi;Jin Hee Noh;Do Hoon Kim;Hee Kyong Na;Ji Yong Ahn;Jeong Hoon Lee;Kee Wook Jung;Kee Don Choi;Ho June Song;Gin Hyug Lee;Hwoon-Yong Jung
    • Clinical Endoscopy
    • /
    • 제55권3호
    • /
    • pp.381-389
    • /
    • 2022
  • Background/Aims: The treatment of superficial esophageal neoplasms (SENs) in cirrhotic patients is challenging and rarely investigated. We evaluated the outcomes of endoscopic submucosal dissection (ESD) to determine the efficacy and safety of treating SENs in patients with liver cirrhosis. Methods: The baseline characteristics and treatment outcomes of patients who underwent ESD for SENs between November 2005 and December 2017 were retrospectively reviewed. Results: ESD was performed in 437 patients with 481 SENs, including 15 cirrhotic patients with 17 SENs. En bloc resection (88.2% vs. 97.0%) and curative resection (64.7% vs. 78.9%) rates were not different between the cirrhosis and non-cirrhosis groups (p=0.105 and p=0.224, respectively). Bleeding was more common in cirrhotic patients (p=0.054), and all cases were successfully controlled endoscopically. The median procedure and hospitalization duration did not differ between the groups. Overall survival was lower in cirrhotic patients (p=0.003), while disease-specific survival did not differ between the groups (p=0.85). Conclusions: ESD could be a safe and effective treatment option for SENs in patients with cirrhosis. Detailed preprocedural assessments are needed, including determination of liver function, esophageal varix status, and remaining life expectancy, to identify patients who will obtain the greatest benefit.

급격한 환경변화에 대한 angelfish (Pterophyllum scalare) 젖산탈수소효소 동위효소의 변화 (Variation of Lactate Dehydrogenase Isozymes in Angelfish (Pterophyllum scalare) according to Acute Environmental Change)

  • 안창수;조성규;염정주
    • 생명과학회지
    • /
    • 제20권3호
    • /
    • pp.416-423
    • /
    • 2010
  • 열대 저산소 환경에 적응되어 있는 angelfish (Pterophyllum scalare)를 급격한 온도변화($27{\pm}0.5{\rightarrow}18{\pm}0.5^{\circ}C$) 및 DO 변화($6{\pm}1{\rightarrow}18\;ppm$)에 2시간 동안 적응시킨 후 젖산탈수소효소(EC 1.1.1.27, lactate dehydrogenase, LDH) 동위효소의 특성 및 유전자발현을 연구하였다. LDH 동위효소의 특성은 native-polyacrylamide gel 전기영동, Western blot 분석 및 효소활성 측정으로 확인하였다. 전기영동 결과 liver- 및 eye-specific Ldh-C 유전자는 간, 눈 및 뇌 조직에서 발현되었다. Western blot 분석 결과 LDH $A_4$ 동위효소는 $B_4$ 동위효소보다 음극 쪽에 나타났다. 간 조직에서 온도 저하 시 LDH $A_4$ 동위효소가 증가하고 $B_4$ 동위효소는 감소하였으며, DO 증가 시 LDH $A_4$$C_4$ 동위효소가 증가하고 $B_4$ 동위효소는 감소하였다. 눈 조직에서는 온도 저하 시 LDH $A_4$$B_4$ 동위효소가 증가하고 $C_4$ 동위효소는 감소하였으며, DO 증가 시 LDH $A_4$$B_4$ 동위효소는 증가하지만 $C_4$ 동위효소 및 하부단위체 C를 포함하는 동위효소는 감소하였다. 심장 조직에서는 DO 증가 시 LDH 활성이 증가하였고, LDH $B_4$ 동위효소가 증가하였다. 뇌 조직에서는 온도 저하 시 LDH $A_4$$B_4$ 동위효소가 증가하였고, DO 증가 시 LDH $B_4$ 동위효소는 증가하였다. 따라서 liver- 및 eye-specific Ldh-C는 DO 변화에 의해 영향을 받으며 간 및 눈 조직에서 LDH $B_4$$C_4$ 동위효소는 서로 상대적으로 조절되므로 $C_4$ 동위효소는 lactate oxidase로서 기능을 나타내는 것으로 사료된다.

Sex-specific relationships between alcohol consumption and vitamin D levels: The Korea National Health and Nutrition Examination Survey 2009

  • Lee, Ka-Young
    • Nutrition Research and Practice
    • /
    • 제6권1호
    • /
    • pp.86-90
    • /
    • 2012
  • This study assessed the association between vitamin D sufficiency (serum 25(OH)D ${\geq}30ng/mL$) and alcohol consumption using data from the Korea National Health and Nutrition Examination Survey conducted in 2009. The following characteristics were obtained in 7,010 Korean participants ${\geq}19$-years-of-age: serum 25(OH)D level, alcohol consumption (drinking frequency, drinking number of alcoholic beverages on a typical occasion, average daily-alcohol intake), and potential confounders (age, residence, housing status, occupation, total fat and lean mass, smoking, physical activity, history of liver diseases, liver function, and daily intake of energy, protein, and calcium). After adjusting for confounders, vitamin D sufficiency in men was significantly associated with drinking frequency, number of alcoholic drinks consumed, and average daily alcohol intake; odds ratio of 1.21-1.72, 2.17-3.04, and 2.27-3.09, respectively. Increase in the three alcohol drinking-related behaviors was also linearly associated with increase in serum 25(OH)D level in men. By comparison, there was no significant association between alcohol intake and serum 25(OH)D level in women. The positive association between vitamin D sufficiency and alcohol consumption was evident only in Korean men.

In Vivo Measurement of Site-Specific Peritoneal Solute Transport Using a Fiber-Optic-based Fluorescence Photobleaching Technique

  • Lee, Donghee;Kim, Jeong Chul;Shin, Eunkyoung;Ju, Kyung Don;Oh, Kook-Hwan;Kim, Hee Chan;Kang, Eungtaek;Kim, Jung Kyung
    • Journal of the Optical Society of Korea
    • /
    • 제19권3호
    • /
    • pp.228-236
    • /
    • 2015
  • Fluorescence recovery after photobleaching (FRAP) is a well-established method commonly used to measure the diffusion of fluorescent solutes and biomolecules in living cells or tissues. Here a fiber-optic-based FRAP (f-FRAP) system was developed, and validated using macromolecules in water and agarose gels of different concentrations. We applied f-FRAP to measure the site-specific diffusion of fluorescein (NaFluo) in peritoneal membranes (PMs) on the liver, cecum, and kidney of a living rat during peritoneal dialysis. Diffusion of fluorescein in PM varied in a time-dependent manner according to the type of organ ($D_{PM\;on\;Liver}/D_{NaFluo}=0.199{\pm}0.085$, $D_{PM\;on\;Cecum}/D_{NaFluo}=0.292{\pm}0.151$, $D_{PM\;on\;Kidney}/D_{NaFluo}=0.218{\pm}0.110$). The proposed method allows direct quantitative measurement of the three-dimensional diffusion in local PM in vivo, which was previously inaccessible by peritoneal function test methods such as peritoneal equilibration test (PET) and standardized PM assessment (SPA). f-FRAP is promising for local and dynamic assessments of peritoneal pathophysiology and the mass transport properties of PMs, presumed to be affected by variation of tissue structures over different organs and functional changes of the PM with years of peritoneal dialysis.

Specialized Proresolving Mediators for Therapeutic Interventions Targeting Metabolic and Inflammatory Disorders

  • Han, Yong-Hyun;Lee, Kyeongjin;Saha, Abhirup;Han, Juhyeong;Choi, Haena;Noh, Minsoo;Lee, Yun-Hee;Lee, Mi-Ock
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.455-464
    • /
    • 2021
  • Uncontrolled inflammation is considered the pathophysiological basis of many prevalent metabolic disorders, such as nonalcoholic fatty liver disease, diabetes, obesity, and neurodegenerative diseases. The inflammatory response is a self-limiting process that produces a superfamily of chemical mediators, called specialized proresolving mediators (SPMs). SPMs include the ω-3-derived family of molecules, such as resolvins, protectins, and maresins, as well as arachidonic acid-derived (ω-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, and alleviation of pain and promote tissue regeneration via novel mechanisms. SPMs function by binding and activating G protein-coupled receptors, such as FPR2/ALX, GPR32, and ERV1, and nuclear orphan receptors, such as RORα. Recently, several studies reported that SPMs have the potential to attenuate lipid metabolism disorders. However, the understanding of pharmacological aspects of SPMs, including tissue-specific biosynthesis, and specific SPM receptors and signaling pathways, is currently limited. Here, we summarize recent advances in the role of SPMs in resolution of inflammatory diseases with metabolic disorders, such as nonalcoholic fatty liver disease and obesity, obtained from preclinical animal studies. In addition, the known SPM receptors and their intracellular signaling are reviewed as targets of resolution of inflammation, and the currently available information on the therapeutic effects of major SPMs for metabolic disorders is summarized.

저산소 환경에 서식하는 열대성 catfish (Pangasius Polyuranodon, Hypostomus Ple-Costomus)의 젖산탈수소효소 동위효소 (Lactate Dehydrogenase Isozyme of Hypoxia Tropical Catfish(Pangasius Polyuranodon, Hypostomus Plecostomus))

  • 조성규;염정주
    • 생명과학회지
    • /
    • 제14권4호
    • /
    • pp.702-707
    • /
    • 2004
  • Pangasius polyuranodon 조직의 젖산탈수소효소(EC 1.1.1.27, lactate dehydrogenase, LDH)는$A_4$, $A_3$B, $A_2$$B_2$, $AB_3$$B_4$동위효소들이 모두 발현되었다. Hypostomus Plecostomus LDH의 경우 $A_4$와 liver-specific $C_4$동위효소가 발현되었다. 골격 근, 심장 및 눈조직에서는 동위효소의 band가 나타나지 않았고, 신장 및 간조직에서 각각 하나의 band가 나타났으며, 뇌조직에서는 4개의 동위효소 band들이 나타났다. 간조직의 band는 alcohol dehydrogenase로 확인되었고, 골격근에서 양극쪽 band는 nothing dehydrogenase로 확인되었다. 따라서 골격근, 심장 및 눈조직에서 LDH는 pyruvate reductase 로서 기능을 하는 것으로 생각된다. P. polyuranodon 조직별 피루브산에 의한 저해정도는 10 mM 피루브산에서 골격근은 57.6%, 심장은 73.8%로 측정되었으나 H. plecostomus의 조직들은 52.7-61.8%로 측정되어 조직특이성이 나타나지 않았다. 따라서 H. plecostomus가 P. polyuranodon 보다 더욱 저산소 환경에서 혐기적 대사에 의해 순응되어졌다고 사료된다.

화어전(化瘀煎)이 조골세포 및 경골골절 유발 생쥐의 골유합에 미치는 영향 (Affirmative Effect of Hwaweo-jeon (Huayu-jian) in Osteoblast Cells and Tibia Fracture-induced Mice)

  • 이수환;;차윤엽
    • 한방재활의학과학회지
    • /
    • 제30권1호
    • /
    • pp.13-29
    • /
    • 2020
  • Objectives This study was performed to decide the bone union effect of Hwaweo-jeon on tibia fractured mice. Methods In this study, laboratory experiments were implemented by the stage of in vitro and in vivo. In in vitro, MC3T3-E1 cells were treated with various concentration of Hwaweo-jeon extract (HWJ). To investigate effect of HWJ for osteoblast, relative mRNA expression of 5 substances (alkaline phosphatase [ALP], runt-related transcription factor 2 [Runx2], osteocalcin [OCN], osterix [OSX] and collagen type II alpha 1 chain [Col2a1]) was used as a marker of osteogenesis. In order to determine HWJ's effect for fracture healing, relative gene expression level of ALP, Runx2, OCN, OSX and Col2a1 were used to find out the influence to osteoblast. Furthermore, receptor activator of nuclear factor kappa-B ligand and osteoprotegerin relative mRNA expression were used to estimate the impact to osteoclast. Also, X-ray was used for the purpose of identifying bone union in tibia-fracture mouse model. Results In in vitro experiment, most part of relative mRNA expression were increased compared to control group. In in vivo and in vitro experiment, HWJ induced osteoblast activitation by verifying relative mRNA expression of 5 substances. And in vivo experiment, we can also identify that HWJ triggered osteoclast activation during early stage of tibia fracture. Furthermore, X-ray pictures show noticeable recovery of tibia fracture. Conclusions HWJ extract promotes bone union by facilitating the osteoblast. But, HWJ may occur liver & kidney toxicity over specific concentration. Therefore, when HWJ is applied to human body, doctors have to follow up the liver function test & renal function test of patient.

[Retraction] A Review on the Role of Irisin in Insulin Resistance and Type 2 Diabetes Mellitus

  • Gizaw, Mamo;Anandakumar, Pandi;Debela, Tolessa
    • 대한약침학회지
    • /
    • 제20권4호
    • /
    • pp.235-242
    • /
    • 2017
  • Irisin is a novel hormone like polypeptide that is cleaved and secreted by an unknown protease from fibronectin type III domain-containing protein 5 (FNDC5), a membrane-spanning protein and which is highly expressed in skeletal muscle, heart, adipose tissue, and liver. Since its discovery in 2012, it has been the subject of many researches due to its potent physiological role. It is believed that understanding irisin's function may be the key to comprehend many diseases and their development. Irisin is a myokine that leads to increased energy expenditure by stimulating the 'browning' of white adipose tissue. In the first description of this hormone, increased levels of circulating irisin, which is cleaved from its precursor fibronectin type III domain-containing protein 5, were associated with improved glucose homeostasis by reducing insulin resistance. Irisin is a powerful messenger, sending the signal to determine the function of specific cells, like skeletal muscle, liver, pancreas, heart, fat and the brain. The action of irisin on different targeted tissues or organs in human being has revealed its physiological functions for promoting health or executing the regulation of variety of metabolic diseases. Numerous studies focus on the association of irisin with metabolic diseases which has gained great interest as a potential new target to combat type 2 diabetes mellitus and insulin resistance. Irisin is found to improve insulin resistance and type 2 diabetes by increasing sensitization of the insulin receptor in skeletal muscle and heart by improving hepatic glucose and lipid metabolism, promoting pancreatic ${\beta}$ cell functions, and transforming white adipose tissue to brown adipose tissue. This review is a thoughtful attempt to summarize the current knowledge of irisin and its effective role in mediating metabolic dysfunctions in insulin resistance and type 2 diabetes mellitus.

The Effect of Dietary Docosahexaenoic Acid Enrichment on the Expression of Porcine Hepatic Genes

  • Chang, W.C.;Chen, C.H.;Cheng, W.T.K.;Ding, S.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권5호
    • /
    • pp.768-774
    • /
    • 2007
  • To study the effect of dietary docosahexaenoic acid (DHA) enrichment on the expression of hepatic genes in pigs, weaned, crossbred pigs (30 d old) were fed diets supplemented with either 2% tallow or DHA oil for 18 d. Hepatic mRNA was extracted. Suppression subtractive hybridization was used to explore the hepatic genes that were specifically regulated by dietary DHA enrichment. After subtraction, we observed 288 cDNA fragments differentially expressed in livers from pigs fed either 2% DHA oil or 2% tallow for 18 d. After differential screening, 7 genes were found to be differentially expressed. Serum amyloid A protein 2 (SAA2) was further investigated because of its role in lipid metabolism. Northern analysis indicated that hepatic SAA2 was upregulated by dietary DHA enrichment (p<0.05). In a second experiment, feeding 10% DHA oil for 2d significantly increased the expression of SAA2 (compared to the 10% tallow group; p<0.05). The porcine SAA2 full length cDNA sequence was cloned and the sequence was compared to the human and mouse sequences. The homology of the SAA2 amino acid sequence between pig and human was 73% and between pig and mouse was 62%. There was a considerable difference in SAA2 sequences among these species. Of particular note was a deletion of 8 amino acids, in the pig compared to the human. This fragment is a specific characteristic for the SAA subtype that involved in acute inflammation reaction. Similar to human and mouse, porcine SAA2 was highly expressed in the liver of pigs. It was not detectable in the skeletal muscle, heart muscle, spleen, kidney, lung, and adipose tissue. These data suggest that SAA2 may be involved in mediation of the function of dietary DHA in the liver of the pig, however, the mechanism is not yet clear.

Human Liver Specific Transcriptional Factor TCP10L Binds to MAD4

  • Jiang, Dao-Jun;Yu, Hong-Xiu;Hexige, Sa-Yin;Guo, Ze-Kun;Wang, Xiang;Ma, Li-Jie;Chen, Zheng;Zhao, Shou-Yuan;Yu, Long
    • BMB Reports
    • /
    • 제37권4호
    • /
    • pp.402-407
    • /
    • 2004
  • A human gene T-complex protein 10 like (TCP10L) was cloned in our lab. A previous study showed that it expressed specifically in the liver and testis. A transcription experiment revealed that TCP10L was a transcription factor with transcription inhibition activity. In this study, the human MAD4 was identified to interact with TCP10L by a yeast two-hybrid screen. This finding was confirmed by immunoprecipitation and subcellular localization experiments. As MAD4 is a member of the MAD family, which antagonizes the functions of MYC and promotes cell differentiation, the biological function of the interaction between TCP10L and MAD4 may be to maintain the differentiation state in liver cells. Also, we propose that the up-regulation of Myc is caused by the down-regulation of TCP10L in human hepatocarcinomas.