• 제목/요약/키워드: Liver organoids

검색결과 6건 처리시간 0.019초

In Vitro Generation of Luminal Vasculature in Liver Organoids: From Basic Vascular Biology to Vascularized Hepatic Organoids

  • Hyo Jin Kim;Gyeongmin Kim;Kyun Yoo Chi;Jong-Hoon Kim
    • International Journal of Stem Cells
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 2023
  • Liver organoids have gained much attention in recent years for their potential applications to liver disease modeling and pharmacologic drug screening. Liver organoids produced in vitro reflect some aspects of the in vivo physiological and pathological conditions of the liver. However, the generation of liver organoids with perfusable luminal vasculature remains a major challenge, hindering precise and effective modeling of liver diseases. Furthermore, vascularization is required for large organoids or assembloids to closely mimic the complexity of tissue architecture without cell death in the core region. A few studies have successfully generated liver organoids with endothelial cell networks, but most of these vascular networks produced luminal structures after being transplanted into tissues of host animals. Therefore, formation of luminal vasculature is an unmet need to overcome the limitation of liver organoids as an in vitro model investigating different acute and chronic liver diseases. Here, we provide an overview of the unique features of hepatic vasculature under pathophysiological conditions and summarize the biochemical and biophysical cues that drive vasculogenesis and angiogenesis in vitro. We also highlight recent progress in generating vascularized liver organoids in vitro and discuss potential strategies that may enable the generation of perfusable luminal vasculature in liver organoids.

Enhancing generation efficiency of liver organoids in a collagen scaffold using human chemically derived hepatic progenitors

  • Myounghoi Kim;Yohan Kim;Elsy Soraya Salas Silva;Michael Adisasmita;Kyeong Sik Kim;Yun Kyung Jung;Kyeong Geun Lee;Ji Hyun Shin;Dongho Choi
    • 한국간담췌외과학회지
    • /
    • 제27권4호
    • /
    • pp.342-349
    • /
    • 2023
  • Backgrounds/Aims: Liver organoids have emerged as a powerful tool for studying liver biology and disease and for developing new therapies and regenerative medicine approaches. For organoid culture, Matrigel, a type of extracellular matrix, is the most commonly used material. However, Matrigel cannot be used for clinical applications due to the presence of unknown proteins that can cause immune rejection, batch-to-batch variability, and angiogenesis. Methods: To obtain human primary hepatocytes (hPHs), we performed 2 steps collagenase liver perfusion protocol. We treated three small molecules cocktails (A83-01, CHIR99021, and HGF) for reprogramming the hPHs into human chemically derived hepatic progenitors (hCdHs) and used hCdHs to generate liver organoids. Results: In this study, we report the generation of liver organoids in a collagen scaffold using hCdHs. In comparison with adult liver (or primary hepatocyte)-derived organoids with collagen scaffold (hALO_C), hCdH-derived organoids in a collagen scaffold (hCdHO_C) showed a 10-fold increase in organoid generation efficiency with higher expression of liver- or liver progenitor-specific markers. Moreover, we demonstrated that hCdHO_C could differentiate into hepatic organoids (hCdHO_C_DM), indicating the potential of these organoids as a platform for drug screening. Conclusions: Overall, our study highlights the potential of hCdHO_C as a tool for liver research and presents a new approach for generating liver organoids using hCdHs with a collagen scaffold.

Guidelines for Manufacturing and Application of Organoids: Liver

  • Hye-Ran Moon;Seon Ju Mun;Tae Hun Kim;Hyemin Kim;Dukjin Kang;Suran Kim;Ji Hyun Shin;Dongho Choi;Sun-Ju Ahn;Myung Jin Son
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.120-129
    • /
    • 2024
  • Recent amendments to regulatory frameworks have placed a greater emphasis on the utilization of in vitro testing platforms for preclinical drug evaluations and toxicity assessments. This requires advanced tissue models capable of accurately replicating liver functions for drug efficacy and toxicity predictions. Liver organoids, derived from human cell sources, offer promise as a reliable platform for drug evaluation. However, there is a lack of standardized quality evaluation methods, which hinders their regulatory acceptance. This paper proposes comprehensive quality standards tailored for liver organoids, addressing cell source validation, organoid generation, and functional assessment. These guidelines aim to enhance reproducibility and accuracy in toxicity testing, thereby accelerating the adoption of organoids as a reliable alternative or complementary tool to animal testing in drug development. The quality standards include criteria for size, cellular composition, gene expression, and functional assays, thus ensuring a robust hepatotoxicity testing platform.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

Novel Alternative Methods in Toxicity Testing

  • Satoh, Tetsuo
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.129-130
    • /
    • 1994
  • The science of toxicology is the understanding of the mechanisms by which exogenous agents produce deleterious effects in biological systems. The actions of chemicals such as drugs are ultimately exerted at the cellular and gene levels. Over the past decade. several in vitro alternative methods such as cultured cells for assessing the toxicity of various xenobiotics have been proposed to reduce the use of animals. In this workshop three advanced methods will be presented. These methods are novel important models for toxicologic studies. Dr. Tabuchis group has establishcd two immortalized gastric surface mucosa cell lines from the pminary cultore of gastric fundic mucosal cells of adult transgenic mice harboring a temperature sensitive simian virus 40 large T-anugen gene. As the immortalized cell lines of various tissues possess unique characteristics to maintain their normal functions for several months, these cell lines are extremely useful for not only toxicity testing but also pharmacological screening in new drug development. Professor Funatsu have studied the formation of spherical multicelluar aggregates of adult rat hepatocytes(spheroid) having tissue like structure. The sphcroid shown thre is a prototype module of an artificial liver support system. Thus, the urea synthesis activity of the artificial liver was maintained at least to days in 100% rat blood plasma. Dr. Takezawa and his coworkers have developed a novel culture system of multicellular spheroids considered 〃organoids〃 by utilizing a thermo-responsive polymer as a substratum of anchorage dependent cells. His final goal is to reconstitute the organoids of various normal organs, e.g., liver, skin etc. and also abnormal deseased organs such as tumor.

  • PDF

Essential Guidelines for Manufacturing and Application of Organoids

  • Sun-Ju Ahn;Sungin Lee;Dayeon Kwon;Sejeong Oh;Chihye Park;Sooyeon Jeon;Jin Hee Lee;Tae Sung Kim;Il Ung Oh
    • International Journal of Stem Cells
    • /
    • 제17권2호
    • /
    • pp.102-112
    • /
    • 2024
  • An organoid is a self-organized three-dimensional structure derived from stem cells that mimics the structure, cell composition, and functional characteristics of specific organs and tissues and is used for evaluating the safety and effectiveness of drugs and the toxicity of industrial chemicals. Organoid technology is a new methodology that could replace testing on animals testing and accelerate development of precision and regenerative medicine. However, large variations in production can occur between laboratories with low reproducibility of the production process and no internationally agreed standards for quality evaluation factors at endpoints. To overcome these barriers that hinder the regulatory acceptance and commercialization of organoids, Korea established the Organoid Standards Initiative in September 2023 with various stakeholders, including industry, academia, regulatory agencies, and standard development experts, through public and private partnerships. This developed general guidelines for organoid manufacturing and quality evaluation and for quality evaluation guidelines for organoid-specific manufacturing for the liver, intestines, and heart through extensive evidence analysis and consensus among experts. This report is based on the common standard guideline v1.0, which is a general organoid manufacturing and quality evaluation to promote the practical use of organoids. This guideline does not focus on specific organoids or specific contexts of use but provides guidance to organoid makers and users on materials, procedures, and essential quality assessment methods at end points that are essential for organoid production applicable at the current technology level.