• 제목/요약/키워드: Liver biochemistry

검색결과 578건 처리시간 0.028초

Studies on the Purification and Partial Characterization of Cysteinesulfinic Acid Decarboxylase from Porcine Liver

  • Lee, Hong-Mie;Jones, Evan E.
    • BMB Reports
    • /
    • 제29권4호
    • /
    • pp.335-342
    • /
    • 1996
  • Porcine liver cysteinesulfinic acid decarboxylase was purified approximately 460-fold by means of ammonium sulfate fractionation and sequential column chromatographic separation with Sephadex G-100, DEAE-cellulose and hydroxylapatite. The enzyme has a flat pH profile with maximum activity occurring between pH 6.0 and 7.6. Pyridoxal 5'-phosphate must be present in all buffers used for purification procedures in order to stabilize the enzyme. Addition of sulfhydryl reagents such as 2-mercaptoethanol are also necessary to maintain maximum enzyme activity throughout purification. The absorption spectrum shows that cysteinesulfinic acid decarboxylase is a pyridoxal 5' -phosphate-containing protein. The major absorption is at 280 nm with two smaller absorption regions, one at 425 nm which is ascribed to a Schiffs base between pyridoxal phosphate and protein, and another at 325 nm which is thought to be due to the interaction of 2-mercaptoethanol with the Schiffs base. A number of divalent cations tested did not affect enzyme activity with the exception of mercury, copper, and zinc which are inhibitory. The partially purified enzyme has an apparent $K_m$ of 0.94 mM for cysteinesulfinate. Cysteic acid is a competitive inhibitor of the enzyme with a $K_i$ of 1.32 mM. The molecular weight of the enzyme was estimated to be about 79,600 by using Sephadex G-200 column chromatography.

  • PDF

Effects of Intravenous Administration of Taurocholate on Hepatic Aryl Sulfotransferase Activity in Cholestatic Rats

  • ;;곽춘식
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.37-43
    • /
    • 2005
  • The possible mechanisms of increased aryl sulfotransferase (AST) isozymes activities in cholestatic rat liver were studied. Hepatic AST-I, II and -III, IV activities were determined from the experimental rats with common bile duct ligation (CBDL). The Michaelis-Menten constants in these hepatic enzymes were also measured. The activities of mitochondrial AST-I, II and -III, IV, and microsomal AST-III, IV as well as their Vmax values were found to be increased significantly in CBDL plus taurocholic acid (TCA) injected group than in the control group, such as CBDL alone groups. However, their Km values in the experimental groups did not vary. The results suggest that TCA stimulates biosynthesis of the AST in the liver.

  • PDF

Transcriptional Profiles of Peripheral Blood Leukocytes Identify Patients with Cholangiocarcinoma and Predict Outcome

  • Subimerb, Chutima;Wongkham, Chaisiri;Khuntikeo, Narong;Leelayuwat, Chanvit;McGrath, Michael S.;Wongkham, Sopit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권10호
    • /
    • pp.4217-4224
    • /
    • 2014
  • Cholangiocarcinoma (CCA), a slow growing but highly metastatic tumor, is highly prevalent in Northeast Thailand. Specific tests that predict prognosis of CCA remain elusive. The present study was designed to investigate whether peripheral blood leukocyte (PBL) transcriptional profiles might be of use as a prognostic test in CCA patients. Gene expression profiles of PBLs from 9 CCA and 8 healthy subjects were conducted using the Affymetrix HG_U133 Plus 2.0 GeneChip. We indentified informative PBLs gene expression profiles that could reliably distinguish CCA patients from healthy subjects. Of these CCA specific genes, 117 genes were up regulated and 60 were down regulated. The molecular and cellular functions predicted for these CCA specific genes according to the Gene Ontology database indicated differential PBL expression of host immune response and tumor progression genes (EREG, TGF ${\beta}1$, CXCL2, CXCL3, IL-8, and VEGFA). The expression levels of 9 differentially expressed genes were verified in 36 CCA vs 20 healthy subjects. A set of three tumor invasion related genes (PLAU, CTSL and SERPINB2) computed as "prognostic index" was found to be an independent and statistically significant predictor for CCA patient survival. The present study shows that CCA PBLs may serve as disease predictive clinically accessible surrogates for indentifying expressed genes reflective of CCA disease severity.

Effects of amino acids on ethanol metabolism and oxidative stress in the ethanol-perfused rat liver

  • Park, Yeong-Chul;Oh, Se-In;Lee, Mee-Sook;Park, Sang-Chul
    • 한국환경성돌연변이발암원학회지
    • /
    • 제16권1호
    • /
    • pp.13-18
    • /
    • 1996
  • One mechanism of free-radical production by ethanol is suggested to be through the intracellular conversion of XDH to XO by increased ratio of NADH to NAD. The major mechanism for physiological compensation of cytosolic NADH/NAD balance is the malate/aspartate shutfie. Therefore, it is important to develop the method to improve the efficiency of malate/aspartate shuttle in ethanol metabolism. In the present study, various amino acids and organic acid involved in the shuttle were tested for their functional efficiency in modulating shuttle in the ethanol-perfused rat liver. The rate of ethanol oxidation in the liver perfused with aspartate alone or aspartate in combination with pyruvate, respectively, was increased by about 10% compared to control liver, but not in the tissues perfused with glummate, cysteine or pyruvate alone. Though glummate, cysteine and pyravate did not affect the ethanol oxidation significanfiy, they showed some suppresive effect on the ethanol-induced radical generation monitored by protein carbonylation analysis. Among the tested components, aspartate is confirmed to be the most efficient as a metabolic regulator for both ethanol oxidation and ethanol-induced oxidative stress in our perfusion system. These effects of aspartate would result from NAD recycling by its supplementation through the coupled aspartate aminotransferase/malate dehydrogenase reactions and the malate-aspartate shuttle.

  • PDF

${\gamma}$-Glutamyltransferase의 조직내 분포에 관한 연구 -단일클론항체의 효소면역측정법, 방사면역측정법, 면역조직화학검사, 자가방사기록검사 적용에 관하여 - (Distribution of Murine Tissue Specific ${\gamma}$-Glutamyltransferase: -Comparison of Six Monoclonal Antibody Applications in Enzyme Linked Immunosorbent Assay, Radioimmunoassay, Immunohistochemistry, and Autoradiography-)

  • 김명근;박윤규;류총근
    • 대한핵의학회지
    • /
    • 제28권1호
    • /
    • pp.112-123
    • /
    • 1994
  • ${\gamma}$-Glutamyltransferase (GGT: E.C. 2.3.2.2.) is a glycoprotein enzyme which is involved in glutathione metabolism and amino acid transport through the plasma membrane. It is distributed widely in several organs including liver and kidney. Several isozymes of GGT have been reported and some of the isozymes may be associated with hepatocarcinogenesis. We have produced six monoclnal antibodies (mAbs) against GGT purified from the liver of 2-acetamidofluorene (AAF) treated rats. All of the six mAbs were obtained by immunizing mice with liver GGT Six hybridomas which produced anti-GGT Abs were extensively subcloned and injected into the peritoneal cavity of BALB/c mice to obtain large quantities of Abs. These mAbs were purified from ascites by ammonium sulfate precipitation and protein A sepharose CL-4B column chromatography. Using these mAbs we preformed enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), immunohistochemistry (IHC), and autoradiography (ARG) to study the distribution of GGT isozyme in tissue. The results indicate that GGT-mAb 1 is specific for the AAF treated liver GGT, GGT-mAb 5 for the normal liver GGT, and GGT-mAb 6 for the normal kindey GGT. These mAbs may be used to evaluate the distribution of GGT isozymes in different tissues.

  • PDF

Duodenal-Jejunal Bypass Surgery Stimulates the Expressions of Hepatic Sirtuin1 and 3 and Hypothalamic Sirtuin1

  • Ha, Eunyoung;Kang, Jong Yeon;Park, Kyung Sik;Seo, Youn Kyoung;Ha, Tae Kyung
    • Journal of Obesity & Metabolic Syndrome
    • /
    • 제27권4호
    • /
    • pp.248-253
    • /
    • 2018
  • Background: Sirtuins mediate metabolic responses to nutrient availability and slow aging and accompanying decline in health. This study was designed to assess the expressions of sirtuin1 (SIRT1) and sirtuin3 (SIRT3) in the liver and hypothalamus after duodenal-jejunal bypass (DJB) surgery in rats. Methods: A total of 38 rats were randomly assigned to either sham group (n=8) or DJB group (n=30). DJB group was again divided into three groups according to the elapsed time after surgery (10 weeks, DJB10; 16 week, DJB16; 28 week, DJB28). The mRNA and protein expressions of SIRT1 and SIRT3 in the liver and hypothalamus were measured by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry analyses. $NAD^+/NADH$ ratio was also measured. Results: We found increased mRNA and protein expression levels of SIRT1 in the liver of DJB16 and DJB28 groups compared with those of sham group. The mRNA and protein expressions of SIRT3 in the liver of DJB group increased proportionally to the elapsed time after DJB surgery. The mRNA expression levels of SIRT1 in the hypothalamus increased in DJB16 and DJB28 groups and protein expression levels of SIRT1 in the hypothalamus increased in DJB10, DBJ16, and DJB28 groups compared with sham group. We observed that mRNA and protein levels of SIRT3 in the hypothalamus of DJB group were not changed. Conclusion: This study proves that DJB increases SIRT1 and SIRT3 expressions in the liver and SIRT1 expression in the hypothalamus. These results suggest the possibility of sirtuins being involved in bypass surgery-induced metabolic changes.

Effects of Pinocembrin on the Initiation and Promotion Stages of Rat Hepatocarcinogenesis

  • Punvittayagul, Charatda;Pompimon, Wilart;Wanibuchi, Hideki;Fukushima, Shoji;Wongpoomchai, Rawiwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권5호
    • /
    • pp.2257-2261
    • /
    • 2012
  • Pinocembrin (5, 7-dihydroxyflavanone) is a flavanone extracted from the rhizome of Boesenbergia pandurata. Our previous studies demonstrated that pinocembrin had no toxicity or mutagenicity in rats. We here evaluated its effects on the initiation and promotion stages in diethylnitrosamine-induced rat hepatocarcinogenesis, using short- and medium-term carcinogenicity tests. Micronucleated hepatocytes and liver glutathione-S-transferase placental form foci were used as end point markers. Pinocembrin was neither mutagenic nor carcinogenic in rat liver, and neither inhibited nor prevented micronucleus formation as well as GST-P positive foci formation induced by diethylnitrosamine. Interestingly, pinocembrin slightly increased the number of GST-P positive foci when given prior to diethylnitrosamine injection.

Effects of Extrahepatic Cholestasis on Hepatic $\alpha$-D-Mannosidase Activity in Chronic Ethanol Intoxicated Rats

  • Si-Woo Bae;Chun-Sik Kwak;Chong-Guk Yoon
    • 대한의생명과학회지
    • /
    • 제9권1호
    • /
    • pp.21-27
    • /
    • 2003
  • Hepatic subcellular $\alpha$-D-mannosidases activities and its Km and Vmax values were determined in chronic ethanol intoxicated rats with extrahepatic cholestasis induced by common bile duct ligation to manifest the biochemical background of alcohol drinking hazard under the hepatobiliary disease. In case of extrahepatic cholestasis, chronic ethanol intoxication in animals led to the increased activities of liver Golgi and microsomal $\alpha$-D-mannosidase as well as the Vmax values of these enzymes. However, the difference of Km values on hepatic subcellular enzymes were not found between the experimental groups. Therefore, the results indicate that the liver Golgi and microsomal $\alpha$-D-mannosidase may be more induced in chronic ethanol intoxication animals in case of cholestasis. Accordingly, the resulting data supported the fact that alcoholic drinks may led to enhancement of the hepatobiliary liver damage.

  • PDF

The Effect of Dimethyl Dimethoxy Biphenyl Dicarboxylate (DDB) against Tamoxifen-induced Liver Injury in Rats: DDB Use Is Curative or Protective

  • El-Beshbishy, Hesham A.
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.300-306
    • /
    • 2005
  • Tamoxifen citrate is an anti-estrogenic drug used for the treatment of breast cancer. It showed a degree of hepatic carcinogenesis, when it used for long term as it can decrease the hexose monophosphate shunt and thereby increasing the incidence of oxidative stress in liver rat cells leading to liver injury. In this study, a model of liver injury in female rats was done by intraperitoneal injection of tamoxifen in a dose of 45 mg/kg body weight for 7 successive days. This model produced a state of oxidative stress accompanied with liver injury as noticed by significant declines in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant elevations in TBARS (thiobarbituric acid reactive substance) and liver transaminases; sGPT (serum glutamate pyruvate transaminase) and sGOT (serum glutamate oxaloacetate transaminase) levels. The oral administration of dimethyl dimethoxy biphenyl dicarboxylate (DDB) in a dose of 200 mg/kg body weight daily for 10 successive days, resulted in alleviation of the oxidative stress status of tamoxifen-intoxicated liver injury in rats as observed by significant increments in the antioxidant enzymes (glutathione-S-transferase, glutathione peroxidase and catalase) and reduced glutathione concomitant with significant decrements in TBARS and liver transaminases; sGPT and sGOT levels. The administration of DDB before tamoxifen intoxication (as protection) is more little effective than its curative effect against tamoxifen-induced liver injury. The data obtained from this study speculated that DDB can mediate its biochemical effects through the enhancement of the antioxidant enzyme activities and reduced glutathione level as well as decreasing lipid peroxides.

Function of gaseous hydrogen sulfide in liver fibrosis

  • Lee, Jae-Ho;Im, Seung-Soon
    • BMB Reports
    • /
    • 제55권10호
    • /
    • pp.481-487
    • /
    • 2022
  • Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.