• Title/Summary/Keyword: Litter type

Search Result 97, Processing Time 0.022 seconds

Characteristics of accumulated soil carbon and soil respiration in temperate deciduous forest and alpine pastureland

  • Jeong, Seok-Hee;Eom, Ji-Young;Park, Ju-Yeon;Lee, Jae-Ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.20-29
    • /
    • 2018
  • Background: For various reasons such as agricultural and economical purposes, land-use changes are rapidly increasing not only in Korea but also in the world, leading to shifts in the characteristics of local carbon cycle. Therefore, in order to understand the large-scale ecosystem carbon cycle, it is necessary first to understand vegetation on this local scale. As a result, it is essential to comprehend change of the carbon balance attributed by the land-use changes. In this study, we attempt to understand accumulated soil carbon (ASC) and soil respiration (Rs) related to carbon cycle in two ecosystems, artificially turned forest into pastureland from forest and a native deciduous temperate forest, resulted from different land-use in the same area. Results: Rs were shown typical seasonal changes in the alpine pastureland (AP) and temperate deciduous forest (TDF). The annual average Rs was $160.5mg\;CO_2\;m^{-2}h^{-1}$ in the AP, but it was $405.1mg\;CO_2\;m^{-2}h^{-1}$ in the TDF, indicating that the Rs in the AP was lower about 54% than that in the TDF. Also, ASC in the AP was $124.49Mg\;C\;ha^{-1}$ from litter layer to 30-cm soil depth. The ASC was about $88.9Mg\;C\;ha^{-1}$, and it was 71.5% of that of the AP. The temperature factors in the AP was high about $4^{\circ}C$ on average compared to the TDF. In AP, it was observed high amount of sunlight entering near the soil surface which is related to high soil temperature is due to low canopy structure. This tendency is due to the smaller emission of organic carbon that is accumulated in the soil, which means a higher ASC in the AP compared to the TDF. Conclusions: The artificial transformation of natural ecosystems into different ecosystems is proceeding widely in the world as well as Korea. The change in land-use type is caused to make the different characteristics of carbon cycle and storage in same region. For evaluating and predicting the carbon cycle in the vegetation modified by the human activity, it is necessary to understand the carbon cycle and storage characteristics of natural ecosystems and converted ecosystems. In this study, we studied the characteristics of ecosystem carbon cycle using different forms in the same region. The land-use changes from a TDF to AP leads to changes in dominant vegetation. Removal of canopy increased light and temperature conditions and slightly decreased SMC during the growing season. Also, land-use change led to an increase of ASC and decrease of Rs in AP. In terms of ecosystem carbon sequestration, AP showed a greater amount of carbon stored in the soil due to sustained supply of above-ground liters and lower degradation rate (soil respiration) than TDF in the high mountains. This shows that TDF and AP do not have much difference in terms of storage and circulation of carbon because the amount of carbon in the forest biomass is stored in the soil in the AP.

Plant Community Structure and Ecological Density of Pinus densiflora for. eracta Community in Chungyang, Kyeongsangbuk-do (경상북도 춘양지방 금강소나무림의 식생구조 및 생육밀도)

  • 이경재;김정호;한봉호
    • Korean Journal of Environment and Ecology
    • /
    • v.15 no.4
    • /
    • pp.379-393
    • /
    • 2002
  • Thirty-six plots (each size 100m2) have been set up and surveyed to investigate the plant community structure and the ecological density of Pinus densiflora for. eracta(Chunyang-type) community in Seobyeok-ri, Chungyang-myeon, bonghwa-gun, Kyeongsangbuk-do. Four communities, Community I (large DBH class), Community II (large DBH class), Community III (middle DBH class), Community IV(small DBH class), were classified into by mean DBH and mean height. Pinus densiflora for. eracta dominate in canopy layer, Fraxinus sieboldiana and Quercus mongolica dominate in understory layer, Rhododendron Schlippenbachii and R. mucronulatum dominate in shrub layer. It turned out that thefour communiteis had low species diversity(0.4320~0.9487; unit: 400$m^2$) and high similarity. By the result of ecological density analysis. the mean basal area was proportionated to mean DBH (cm) size. By the result of simple regression analysis between mean DBH(cm), mean distance(m), and the number of individual were as follow: Ecological distance(m) = 0.0934$\times$ DBH(cm) +0.6117, Number of individual=242.47$\times$ DBH(cm)$^{-1.009}$, Ecological distance=9.643$\times$No. of individua $l^{-0.7016}$. In addition to four communities were suitable to the growth of Tricholoma matsutake because average species were about 30~50 years old, litter layer was 0.5~2.5cm and the ratio of coverage shrub was 20% .

A Study on the Habitat Suitability Index (HSI) of 'Hynobius leechii' in Central Forest Area, Korea (중부 산림지역 내 도롱뇽 서식지 적합성 지수(HSI)에 관한 연구)

  • Ko, Kyu Young;Koo, Bon Hak
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.213-223
    • /
    • 2022
  • This study was conducted to establish a Habitat Suitability index (HSI) based on literature research and field surveys on ecology and habitat of 'Hynobius leechii'. And this study will be used as basic data for qualitative evaluation of habitat environment. The survey sites were divided into natural habitats close to the prototype habitat and artificial restoration areas where Hynobius leechii was monitored. So the types of habitats were diversified. Hynobius leechii is a vulnerable species to climate change because it is affected by the microhabitat and has low mobility. HSI variables of Hynobius leechii were extracted through domestic and overseas literature, and standards were extracted from literature research and field survey. The standards were presented as a value of the physical allowable category in consideration of realization. To verify the study, an in-depth consultation was conducted by amphibians experts. HSI variables of Hynobius leechii were included 9 variables such as Overstory canopy cover(%), Understory cover(%), Water-pH, Soil-pH, Soil relative humidity(%), Leaf litter depth(cm), Rock substrates (%), Type of Coarse woody, Distance from Street or Pollutant(m).

Effect of Perch Type and Height on the Growth Performance, Behavioral Characteristics, and Meat Quality of Broilers (홰 종류 및 높이 설정에 따른 육계 생산성, 행동특성, 계육품질에 미치는 영향)

  • Kim, Hyunsoo;Kim, Hee-Jin;Jeon, Jin-Joo;Son, Jiseon;You, Are-Sun;Kang, Bo-Seok;Hong, Eui-Chul;Kang, Hwan-Ku
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.227-238
    • /
    • 2021
  • This study investigates the effect of perch type and height on the growth performance, footpad dermatitis (FPD), blood parameters, behavioral characteristics, and meat quality of broilers. A total of 912 one-day-old male Ross 308 broilers (48.23±0.264 g) were subjected to a three x two factorial design of three types of perch (wood, steel, plastic) and two levels of perch height (10→30 cm change, 10 cm fixed) over a five-week experiment. Growth performance, perch availability, litter quality, FPD incidence, serum biochemical parameters, and meat quality of the broilers were evaluated. There were no significant differences in the body weight, feed conversion ratio, and biochemical parameters (except for aspartate aminotransferase), pH, color, and water holding capacity. The incidence of FPD was significantly higher in the plastic perch group than in the wood and steel perch groups (P<0.05) at five weeks of age. Perch use was high in the order of wood, steel, and plastic groups in the daytime and nighttime at one, three, and five weeks of age (P<0.05). Perch use was higher in the 10 cm fixed group than the 10→30 cm group (P<0.05). The shear force of the breast significantly increased in the order of wood, steel, and plastic groups (P<0.05). In conclusion, the group with a fixed perch height of 10 cm had high perch usage. Additionally, the use of wooden perches was higher than that of other materials, and it lowered the incidence of FPD in broilers.

Studies on the Seed Characteristics and Viabilities of Six Acer Species in Relation to Natural Regeneration in Korea (천연갱신과 관련된 한국산 단풍나무속 6종의 종자특성과 종자활력에 관한 연구)

  • Kim, Gab-Tae;Kim, Hoi-Jin
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.3
    • /
    • pp.358-364
    • /
    • 2011
  • To examine the possibility of natural regeneration of six Acer species in broadleaved mixed forest in Korean peninsula, samples of six Acer species' samaras were collected at several seed sources from September to October 2009 and 2010, and seed morphological characteristics and viability were studied using cutting method. Inflorescense type of Acer mandshuricum(AM), A. pseudosieboldianum(APS) and A. palmatum(AP) is corymb, that of A. pictum subsp. mono(APSM) and A. okamotoanum(AO) is flat-topped panicle, and that of A. ukurunduense(AU) is raceme. Number of seed-set per inflorescense proves the highest value 38.5 sets in AU and the lowest value 2.4 sets in APS. Diameter of the seeds proves highest value 13.5mm in AO, and the lowest value 4.7mm in APS. Angles between the wings proves the highest values $130.05^{\circ}$ in APS, and the lowest value $48.60^{\circ}$ in AU. Air dry weight of 20 seed-sets proves highest value 3,900mg, in AO, and the lowest value 404mg in AU. Viable seed ratio of AP proves 50%, and that of AU does 43.2%. Those of other four species ranges 8.6~22.2%. Considering postdispersal seed predators and disturbance of litter, viable seeds of APSM, AO, AM, and APS supplied in the natural forest in Korea might be insufficient for seedling establishment. This study showed that sound viable seed supply might be key factors of natural regeneration of major Acer species in Korea. The openings made by insect pests were observed on the seed-coat of APSM, AM, AU, and APS samara, and Bradybatus sharpi were observed in the samaras of APSM and AO. Further study on the seed insect fauna, pre- and post-dispersal seed viability, and annual variation on these factor should be needed.

Analyzing the Influence of Biomass and Vegetation Type to Soil Organic Carbon - Study on Seoseoul Lake Park and Yangjae Citizen's Forest - (바이오매스량과 식생구조가 토양 탄소함유량에 미치는 영향 분석 - 서서울호수공원과 양재 시민의 숲을 대상으로 -)

  • Tanaka, Riwako;Kim, Yoon-Jung;Ryoo, Hee-Kyung;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.1
    • /
    • pp.123-134
    • /
    • 2014
  • Identification of methods to optimize the growth of a plant community, including the capacity of the soil to further sequester carbon, is important in urban design and planning. In this study, to construct and manage an urban park to mitigate carbon emissions, soil organic carbon of varying biomass, different park construction times, and a range of vegetation types were analyzed by measuring aboveground and belowground carbon in Seoseoul Lake Park and Yangjae Citizen's Forest. The urban parks were constructed during different periods; Seoseoul Lake Park was constructed in 2009, whereas Yangjae Citizen's Forest was constructed in 1986. To identify the differences in soil organic carbon in various plant communities and soil types, above and belowground carbon were measured based on biomass, as well as the physical and chemical features of the soil. Allometric equations were used to measure biomass. Soil total organic carbon (TOC) and chemical properties such as pH, cation exchange capacity (CEC), total nitrogen (TN), and soil microbes were analyzed. The analysis results show that the biomass of the Yangjae Citizen's Forest was higher than that of the Seoseoul Lake Park, indicating that older park has higher biomass. On the other hand, TOC was lower in the Yangjae Citizen's Forest than in the Seoseoul Lake Park; air pollution and acid rain probably changed the acidity of the soil in the Yangjae Citizen's Forest. Furthermore, TOC was higher in mono-layered plantation area compared to that in multi-layered plantation area. Improving the soil texture would, in the long term, result in better vegetation growth. To improve the soil texture of an urban park, park management, including pH control by using lime fertilization, soil compaction control, and leaving litter for soil nutrition is necessary.

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF