• 제목/요약/키워드: Litter decomposition rate

검색결과 57건 처리시간 0.022초

The Decomposition of Leaf Litters of Some Tree Species in Temperate Deciduous Forest in Korea II. Changes in Nutrient Content During Litter Decomposition

  • Yang, Keum-Chul;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • 제26권6호
    • /
    • pp.313-319
    • /
    • 2003
  • Dry weight loss and nutrient release from leaf litter for six tree species were studied using litter bag methods. The litter bags were incubated for f6 months on the forest floor in temperate deciduous forest in Mt. Cheonma, located at the middle part of Korean Peninsula. The changes in nutrient content and the rate of dry weight loss in leaf litter varied with litter types. The litter of Pinus densiflora showed the lowest rate of mass loss (k=0.33), nitrogen concentration (0.89%) and ash concentration (2.50%), while showed the highest C/N ratio (63.40). On the other hand, the litter of Acer pseudo-sieboldianum showed the fastest rate of mass loss (k=0.82), the highest nitrogen concentration (1.11%), and the lowest C/N ratio (49.40). During the decomposition, nitrogen, phosphorus and calcium in the leaf litters showed relatively slow decreasing pattern compared to other elements (carbon, potassium, magnesium, manganese and sodium), but potassium and sodium decreased at early stage of the decomposition for all leaf litters. Differences in annual decomposition rates of litter among species were consistent with the particular chemical characteristics of their leaf litters. The initial concentration of nitrogen was positively correlated with litter decomposition rate for six species, while litter decomposition rate of six species was negatively correlated with C:N ratio of initial leaf litters.

The Decomposition of Leaf Litters of Some Tree Species in Temperate Deciduous Forest in Korea I. Losses in Dry Weight of Leaf Litter

  • Yang, Keum-Chul;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • 제26권4호
    • /
    • pp.203-208
    • /
    • 2003
  • Losses in the dry weight of leaf litter from six tree species were studied during 16 months on the forest floor in temperate deciduous forest of Mt. Cheonma in the vicinity of Seoul in Korea by using litter bag method. The decomposition rate of each leaf litter varies with each species. After 16 months elapsed, the leaf litter of Acer pseudo-sieboidianum showed the highest decomposition constant (0.82) as Olson´s decomposition constant, while that of Pinus densiflora showed the lowest decomposition constant (0.33). The decomposition constant of Quercus mongolica, Q. serrata, Betula ermani and Carpinus laxiflora showed 0.43, 0.37, 0.66 and 0.75, respectively. The decomposition constant of leaf litter was considered with temperature and precipitation which accumulated daily during each term of litter bag collection. The decomposition constant of leaf litter showed closely positive correlation with daily accumulative temperature and precipitation. The relationships between decomposition constant and the daily accumulative temperature and precipitation at each period of litter bag collection were analyzed through multi-regression analysis. The correlation coefficients as a result of multi-regression analysis in Q. mongolica, Q. serrata, P densiflora, B. ermani, C. laxiflorais and A. pseudo-sieboldianum were 0.83, 0.81, 0.69, 0.77, 0.77 and 0.62, respectively. The precipitation showed higher effect, about 10 times, on the leaf litter decomposition than the daily accumulative temperature.

우리 나라 주요 삼림수종의 낙엽의 생산과 분해에 관한 연구 (A Study on the Production and Decomposition of Litters of Major Forest Trees in Korea)

  • 김종희;장남기
    • 아시안잔디학회지
    • /
    • 제11권1호
    • /
    • pp.33-43
    • /
    • 1997
  • The production and decomposition rate of litters of major forest trees in Korea, such as Quercus acutissima, Quercus mogolica Robinia pseudoacacia Pinus rigida, Pinus thunbergiana, Abies koreana,Phy'llostackys reticulata, were estimated by Olson model. The amount of mineral nutrients in litters and soil were measured, and the relationships among them were studied. The annual litter production was the most in the forest of broadleaved deciduous trees and the least in the forest of monocotyledonous trees. The decomposition rate of broadleaved deciduous litters was higher than that of coniferous litters and lower than that of R. pseudoacacia litters. The time required for the decomposition of half of the accumulated organic matter of R.pseudoacacia litter, Quercus litter, P. rigida litter, Ph. reticulata litter, P. thunbergiana litter and .4.koreana litter in the forest stands were 1.263 years, 2.290~2.365 years, 2.644 years, 4.660 years,4.750 years, 6.699 years respectively. The amounts of N in litters and the amounts of N returned to the soil in the forests of R. pseudoacacia. Quercus, Pinus were proportional to the decay rate of organic matter. Key words: Annual litter production, Decomposition rate.

  • PDF

사문암지대의 중금속 함유 낙엽의 분해에 관한 연구 I. Microcosm 실험 (Studies on the Decomposition of Leaf Litter Containing Heavy Metals in Andong Serpentine Area, Korea I. Microcosm Experiment)

  • 류새한;김정명;심재국
    • 환경생물
    • /
    • 제27권4호
    • /
    • pp.353-362
    • /
    • 2009
  • This study attempted to compare the litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens which collected from serpentine soil acting potentially toxic concentration of heavy metals and non-serpentine soil by using the microcosm method for 192 days under constant humidity and $23^{\circ}C$. The contents of Ni, Fe, Mg and Cr in the serpentine and nonserpentine soil originated litter showed high differences between them. The litter samples from serpentine site have lower C/N than non-serpentine litter, but the soluble carbohydrate content was shown almost similar between two plant litter. The mass loss rates of leaf litter from serpentine area were slower than those from non-serpentine site. During the experimental period, the remained dry weight of A. hirta and M. sinensis var. purpurascens litter collected from serpentine site were 64.7%, 65.0% of initial dry weight and litter samples from non-serpentine site showed 54.2%, 50.7%, respectively. K and Na were leached rapidly at the initial decomposition periods, but Ca showed immobilization and other metal elements reserved at the decomposing litter for a long time. The decomposing A. hirta litter from non-serpentine soil showed higher values of $CO_2$ evolution, microbial biomass-C, and microbial biomass-N than those in serpentine soil originated litter acting nutrient stresses and exhibited rapid decay rate. The microbial biomass and microbial respiration of decaying litter were positively correlated with litter decomposition rate, and these relationships showed more rapid slope in non-serpentine soil originated litter than that in serpentine soil.

方位에 따른 落葉의 分解率과 土壤 微生物에 관한 硏究 (The Decomposition Rate of Litter and Soil Microorganisms on Slope Directions)

  • Park, Bong Kyu;Mi Rim Kim
    • The Korean Journal of Ecology
    • /
    • 제8권1호
    • /
    • pp.31-37
    • /
    • 1985
  • The decomposition rate of litter and the number of soil microorganisms were measured on various slope directions in deciduous oak forest in Mt. Yongam. And the chemical constitutents of litter and soil were analyzed. The decomposition rate by slope directions followed the order east facing slope>south-east facing slope>north-west facing slope>north-east facing slope>north facing slope>south facing slope>south-west facing slope>west facing slope. Of the chemical constituents analyzed, original concentrations of Ca and carbohydrate were closely correlated with the decomposition rate. There was a close relation between the number of fungi and decomposition rate by slope directions. However, a little relationship existed between the number of bacteria and decomposition rate by slope directions. The number of fungi and concentrations of Ca and carbohydrate correlated to each other. And the number of bacteria is related to concentrations of phosphorus.

  • PDF

남산과 광릉 활엽수림에서 낙엽분해에 관여하는 토양무척추동물군집에 관한 연구 (Studies on the Soil Invertebrate Community in the Process of Leaf Decomposition in Namsan and Kwangreung Deciduous Forests)

  • 배윤환;이준호
    • 한국토양동물학회지
    • /
    • 제2권2호
    • /
    • pp.83-91
    • /
    • 1997
  • One year study with litter bags(mesh size - 0.4mm, 0.8mm, 1.7mm and 5.0mm) was carried out to investigate the soil invertebrate community in the process of leaf decomposition in Namsan and Kwangreung deciduous forests, which were considered to be under different degrees of environmental selective pressure. Soil animals collected from litter bags were classified into the class of order or higher taxa. Acari and Collembola were major groups: Acari and Collembola were about 60% and 30% of total soil animals in their numbers, respectively. Among minor groups, Dipteria, Araneae, Diplopoda, Coleoptera and Chilopoda were comparatively dominant. In Namsan forest which was considered to be under higher environmental selective pressure than Kwangreung, the densities of Acari and Collembola were somewhat higher than in Kwangreung, although there was no statistically significant difference between two sites. The densities of Chilopoda, Enchytraeidae and Nematoda were much higher in Namsan than in Kwangreung but Diplopoda and Symphyla were much more in Kwangreung. It was expected that those groups could be used as bioindicators. The densities of Acari and Collembola were very low until March and then showed the peak in May. But they decreased slowly until November. There was no significant difference among the mesh sized of litter bags in the densities of Acari and Collembola but other groups of soil invertebrates seemed to be prevented from immigrating into the litter bag of mesh size 0.4mm. Decomposition rate of litter in the litter bag was low in early stage of decomposition. The % residual mass over initial mass at 8 months after litter bag introduction in the field was over 80%. Thereafter, % residual mass decreased more fast and was about 60% at 1 year after bag introduction. There was little evidence for the effects of soil invertebrates upon the litter decomposition in the period of this study. And there was no significant difference between Namsan and Kwangreung or among mesh sizes of litter bags in the decomposition rate.

  • PDF

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • 제34권4호
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Nutrient dynamics in decomposing litter from four selected tree species in Makurdi, Benue State, Nigeria

  • Okoh, Thomas;Edu, Esther
    • Journal of Ecology and Environment
    • /
    • 제43권4호
    • /
    • pp.376-384
    • /
    • 2019
  • Background: Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e-kd t, while $Kd=-{\frac{1}{t}}In({\frac{Wt}{W0}})$ was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as $NAI=(\frac{{\omega}t\;Xt}{{\omega}oXo})$. Results: Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion: Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.

Wood and Leaf Litter Decomposition and Nutrient Release from Tectona grandis Linn. f. in a Tropical Dry Deciduous Forest of Rajasthan, Western India

  • Kumar, J.I. Nirmal;Sajish, P.R.;Kumar, Rita.N.;Bhoi, Rohit Kumar
    • Journal of Forest and Environmental Science
    • /
    • 제26권1호
    • /
    • pp.17-23
    • /
    • 2010
  • The present study was conducted to quantify wood and leaf litter decomposition and nutrient release of a dominant tree species, Tectona grandis Linn. F. in a tropical dry deciduous forest of Rajasthan, Western India. The mean relative decomposition rate was maximum in the wet summer and minimum during dry summer. Rainfall and its associated variables exhibited greater control over litter decomposition than temperature. The concentrations of N and P increased in decomposing litter with increasing retrieval days. Mass loss was negatively correlated with N and P concentrations. The monthly weight loss was significantly correlated (P < 0.05) with soil moisture and rainfall in both wood and leaf litter. Tectona grandis was found to be most suitable tree species for plantation programmes in dry tropical regions as it has high litter deposition and decomposition rates and thus it has advantages in degraded soil restoration and sustainable land management.

토양호흡의 계절적 변이에 기여하는 리터의 분해속도 (Seasonal Variation of Contribution of Leaf-Litter Decomposition Rate in Soil Respiration in Temperate Deciduous Forest)

  • 서상욱;민윤경;이재석
    • 한국농림기상학회지
    • /
    • 제7권1호
    • /
    • pp.57-65
    • /
    • 2005
  • 토양은 리터의 축적, 분해, 뿌리호흡을 포함하는 토양호흡을 통해 많은 양의 탄소를 저장 또는 방출할 수 있다. 이러한 토양의 주요한 탄소 및 양분의 공급원은 낙엽낙지의 유입과 유입된 낙엽낙지의 분해이며 생태계로 돌아가는 영양의 약 60%가 낙엽에서 유래되는 것으로 알려져 있다. 본 연구의 목적은 천연자연림으로 잘 보존된 경기도 광릉시험림의 온대낙엽활엽수림의 리터 생산량과 분해속도가 토양호흡의 계절적 변 이에 미치는 영향을 파악하고 낙엽층과 토양호흡간의 관련성을 찾아 생태계에서의 탄소순환을 이해하기 위한 것이다. 광릉 낙엽활엽수림에서 2003년 생산된 리터의 총량은 1489 Cm/sup -2/ yr/sup -1/ 이었으며 조사지의 우점종인 졸참나무, 서어나무, 까치박달의 순수 낙엽의 총량은 1189 Cm/sup -2/ yr/sup -1/이었다. 낙엽의 분해율은 조사기간인 1년 동안 졸참나무는 24.2%(k = 0.28), 서어나 무는 25.7%(k = 0.30), 까치박달은 33.0%(k = 0.46)이었 다. AOCC를 이용한 연속적인 토양호흡 측정결과 연간 토양호흡량은 629.69 Cm/sup -2/ yr/sup -1/이었으며 이 중 리터 분해가 차지하는 비율은 약 5%인 309 Cm/sup -2/ yr/sup -1/이었다. 토양호흡의 동절기 최저값은 7.4±1.4g Cm/sup -2/ month/sup -1/ 이었으며 이 시기의 리터 분해속도도 0.8g Cm/sup -2/ month/sup -1/로 최저값을 나타내었다. 하절기에는 토양 호흡과 리터 분해속도 모두 증가하여 111.5 ± 16.2g Cm/sup -2/ month/sup -1/와 11.4g Cm/sup -2/ month/sup -1/로 최고값을 보였다. 토양호흡 중 리터 분해속도가 차지하는 비율은 식물 지하부의 생장이 활발해지는 5-6월에는 4.3%로 감소하였으며 리터의 생산량이 증가하는 11- 12월에는 23.5%로 증가하였다. 회귀분석결과 리터 분해속도와 토양호흡과는 r²= 0.63의 상관관계를 가지고 있었다.