• Title/Summary/Keyword: Litter

Search Result 957, Processing Time 0.08 seconds

The Role of Phosphorus on Plant Succession of Grassland in Andosol Region II. Accumulation and decomposition of litter in natural grassland community (강산성 화산회토양에 있어서 초원의 천이에 미치는 인산의 역할 II. 야초군락에 있어서 Litter의 집적과 분해)

  • Chung, Chan;Sugawara, Kazuo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 1993
  • This study was investigated about decomposition process of litter that is reduction pathway of phosphorus from plant body to soil That is, in each community of Miscanthus sinensis, SaSa palmalta. Artemisia princeps and Polygonum thunbergii, disappearing speed was calculated from total fallen leaves yield supplied as litter and litter existant yield. Besides, setting up litter bag that put litter in nylon mesh bag. calculated disappearing speed from decreasing speed of the weight of contents and then was compared and examined. The results obtained are summarized as follows : 1. Maximum litter yield was sequently Miscanthus sinensis>SaSa palmalta>Artemisia princeps>Polygonum thunbergii, but, supplied litter yield was sequently Artemisia princeps>Miscanthus sinenis>Polygonum thunbergii>SaSa palmalta. 2. Reduction speed of phosphorus from plant body to soil was Polygonum thunbergii>Artemisia princeps>Miscanthus sinensis>SaSa palmalta. 3. Caculated disappearing speed using litter bag method was shown latter tendency than that of natural condition. 4. It was significantly negative relationship between N contents of litter and disappearing speed of litter.

  • PDF

Estimation of Genetic Variance and Covariance Components for Litter Size and Litter Weight in Danish Landrace Swine Using a Multivariate Mixed Model

  • Wang, C.D.;Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1015-1018
    • /
    • 1999
  • Single trait mixed models have been dominantly utilized for genetic evaluation of the reproductive traits in swine. However employing multiple trait approach may lead to more accurate genetic evaluations. For 5 litter size and litter weight traits of Danish Landrace, genetic parameters were estimated with a multiple trait mixed model. The heritability estimates were 0.02, 0.03, 0.03, 0.05, and 0.07, respectively for litter size at birth, litter size born alive, litter weight at birth, litter size at weaning, and litter weight at weaning. Negative genetic correlations were all positive. The litter weight at birth showed genetic antagonism with litter size born alive (-0.65) and litter size at weaning (-0.31), but positive with litter size at birth (0.47) and litter weight at weaning (0.31). The estimates of environmental correlations were larger than their corresponding genetic correlation estimates except for those between litter weight at birth and the other four traits. This study recommends simultaneous selection for two or more traits with multivariate mixed models in order to improve overall economic response.

The Effect of New Sawdust and Used Sawdust as a Litter Material for Broiler (육계 사육시 깔짚 재이용 효과)

  • 최희철;이덕수;서옥석;한정대;권두중;곽정훈;장병귀;강보석
    • Journal of Animal Environmental Science
    • /
    • v.5 no.2
    • /
    • pp.107-112
    • /
    • 1999
  • This trial was carried out to compare the effect of fresh sawdust and 2 time used sawdust as a litter for Broiler. Broiler was reared from day old to 49 day. The depth. The depth of litter was 5cm in fresh sawdust and 2.5cm in used sawdust with adding 2.5cm depth of fresh sawdust, respectively. Moisture contents of litter and ammonia gas were not affected by litter treatment. The temperatures of litter were not influenced by the litter treatment; however, They were increased significantly at the age of 5 weeks of broiler reared in used sawdust litter(P<0.05). Weight gain, feed conversion and mortality was not influence between litter types. It is conclude that sawdust of litter material can be recycled saveral times as a broiler litter.

Patterns of antibiotic resistance in Escherichia coli isolated from fresh and recycled poultry litter (깔짚 교체 및 재사용 육계농장 분리 대장균의 항생제 내성 양상)

  • Sung, Haan-Woo;Choi, Kang-Seuk;Kwon, Hyuk-Moo;Lee, Young-Ju
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.3
    • /
    • pp.189-195
    • /
    • 2017
  • The isolation rate of Escherichia (E.) coli in poultry litter was investigated at 44 broiler farms, 20 that used fresh litter and 24 that used recycled litter. The patterns of resistance to antibiotics of the E. coli isolates were compared. In litter sampled before the rearing period, the isolation rate of E. coli was higher at farms that used fresh litter; E. coli was present in the litter in 94.5% (35 out of 37 flocks tested) of the farms that used fresh litter vs. 51.2% (21 out of 41 flocks) of the farms that used recycled litter. The susceptibility of the 93 isolates of E. coli to 13 antibiotics was studied. Before the rearing period, E. coli isolates from the farms that recycled litter showed higher resistance rates than isolates from farms that replaced litter with fresh litter. Comparing the antibiotic resistance patterns of isolates from litter sampled before and at the end of the rearing period, the antibiotic resistance rates at the end of the rearing period increased dramatically compared with rates before the rearing period.

Mass Loss Rates and Nutrient Dynamics of Oak and Mixed-Hardwood Leaf Litters in a Gyebangsan (Mt,) Forest Ecosystem

  • Kim, Choonsig
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.335-340
    • /
    • 2003
  • Patterns of mass loss and nutrient release from decomposing oak (Quercus mongolica) and mixed litters (Q. mongolica, Betula schmidtii, Acer pseudo-sieboldianum, Kalopanx pictus and Tilia amurensis) in a natural hardwood forest in Gyebangsan (Mt.) were examined using litterbags placed on the forest floor for 869 days. Mass loss rates from decomposing litter were consistently higher in mixed litter (59%) than in oak litter types (52%) during the study period. Nutrient concentrations such as nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) from decomposing litter were also higher in mixed litter than in oak litter types. Nutrient concentrations (N, P, Ca, and Mg) increased compared with initial concentration of litter, while K concentrations dropped rapidly at the first 5 months and then stabilized. The results suggest that mas loss and nutrient release obtained from decomposing litter of single species in mixed hardwood forest ecosystem should be applied with caution because of the potential differences of mass loss and nutrient release between single litter and mixed litter types.

Litter Production and Decomposition in the Querces acutissima and Pinus rigida Forests (상수리나무림과 리기다소나무림의 낙엽 생산과 분해)

  • 문형태;주환택
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.345-353
    • /
    • 1994
  • Litter production and decomposition were investigated for 2 years in the oak, Quercus acutissima, and the pitch pine, Pinus rigida, stands in the vicinity of Kongju, Chungnam Province. Litter production was measured with litter trap at monthly basis. Litterbag method was used for the measurement of litter decomposition. Litter producion continued throughout the year, but showed a peak in autumn. Second peak in May or June was caused by falling of bud scales and reproductive organs. Average litter production in the oak and the pitch pine stands were $567.1g{\cdot}m^{-2}{\cdot}yr^{-1}\;and\;653.2g{\cdot}m^{-2}{\cdot}yr^{-1}$, respectively. Litter production in this study area were higher than those in other reports. Nutrient concentrations in litter were the highest in summer when the least litter production occurred, and the lowest in autumn when the greatest litter production occurred, except for calcium in the oak stand. Nutrient concentrations of the oak litter were higher than those in the pitch pine litter. After 1 year, % remaining mass of oak and pitch pine litter was 43.6% and 58%, respectively. After 21 months elapsed, % remaining mass of oak and pitch pine litter was 22.2% and 33.2%, respectively.

  • PDF

Effects of Bedding Materials and Season on the Composition and Production Rate of Broiler Litter as a Nutrient Resource for Ruminants

  • Park, K.K.;Yang, S.Y.;Kim, B.K.;Jung, W.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1598-1603
    • /
    • 2000
  • Broiler litter can be used as a feedstuff for ruminants. Fifty seven litter samples collected from 47 farms in Kyungkee Province of Korea were analyzed to assess the effects of type and amount of bedding (rice hulls vs. sawdust), season (winter vs. summer) and drinkers (bell- vs. trough-type) on composition of broiler litter. Rearing conditions of broilers were also surveyed from the farms to estimate annual production rate of litter. Nutrient composition of broiler litter varied widely and moisture and ash concentrations were higher than observed by other researchers. Ash concentration was higher (p<0.05) for samples taken in winter than in summer and higher (p<0.05) in the rice hulls- than in the sawdust-based litter both in winter and summer. Only minor differences in litter composition were noted between drinkers. Ash was negatively correlated with crude protein and neutral detergent fiber (p<0.01), and acid detergent fiber (p<0.05). The estimated litter production rate was 2.7 kg per bird per flock on a wet basis (60% DM) and the annual production rate was 12.7 kg per bird per yr (60% DM). Therefore, the 42 million broilers per month grown in Korea in 1999 produced a total of 533,400 metric tons of litter.

Weight Loss and Nutrient Dynamics during Leaf Litter Decomposition of Quercus variabilis and Pinus densiflora at Mt. Worak National Park

  • NamGung, Jeong;Han, A-Reum;Mun, Hyeong-Tae
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.291-295
    • /
    • 2008
  • Weight loss and nutrient dynamics of oak and pine leaf litter during decomposition were investigated from December 2005 through June 2008 at Mt. Worak National Park as a part of National Long-Term Ecological Research Program in Korea. The decay constant (k) of oak and pine leaf litter were 0.314 and 0.217, respectively. After 30 months decomposition, remaining weight of oak and pine leaf litter was 45.5% and 58.1%, respectively. Initial C/N ratio of oak and pine leaf litter was 53.4 and 153.0, respectively. Carbon % of initial oak and pine leaf litter was similar with each other; however, nitrogen content of initial oak leaf litter (0.85%) was greater than that of initial pine leaf litter (0.33%). N and P concentration in both decomposing leaf litter increased significantly during decomposition. There was no net N and P mineralization period in decomposing pine leaf litter. K, Ca and Mg concentration in both decomposing leaf litter showed different pattern with those of N and P. After 30 months decomposition, remaining nutrients in oak and pine leaf litter were 97.7 and 216.2% for N, 123.2 and 216.5% for P, 39.3 and 44.8% for K, 47.9 and 40.6% for Ca, 30.7 and 51.2% for Mg, respectively.

Studies on the Decomposition of Leaf Litter Containing Heavy Metals in Andong Serpentine Area, Korea I. Microcosm Experiment (사문암지대의 중금속 함유 낙엽의 분해에 관한 연구 I. Microcosm 실험)

  • Ryou, Sae-Han;Kim, Jeong-Myeong;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.4
    • /
    • pp.353-362
    • /
    • 2009
  • This study attempted to compare the litter decomposition rate of Arundinella hirta and Miscanthus sinensis var. purpurascens which collected from serpentine soil acting potentially toxic concentration of heavy metals and non-serpentine soil by using the microcosm method for 192 days under constant humidity and $23^{\circ}C$. The contents of Ni, Fe, Mg and Cr in the serpentine and nonserpentine soil originated litter showed high differences between them. The litter samples from serpentine site have lower C/N than non-serpentine litter, but the soluble carbohydrate content was shown almost similar between two plant litter. The mass loss rates of leaf litter from serpentine area were slower than those from non-serpentine site. During the experimental period, the remained dry weight of A. hirta and M. sinensis var. purpurascens litter collected from serpentine site were 64.7%, 65.0% of initial dry weight and litter samples from non-serpentine site showed 54.2%, 50.7%, respectively. K and Na were leached rapidly at the initial decomposition periods, but Ca showed immobilization and other metal elements reserved at the decomposing litter for a long time. The decomposing A. hirta litter from non-serpentine soil showed higher values of $CO_2$ evolution, microbial biomass-C, and microbial biomass-N than those in serpentine soil originated litter acting nutrient stresses and exhibited rapid decay rate. The microbial biomass and microbial respiration of decaying litter were positively correlated with litter decomposition rate, and these relationships showed more rapid slope in non-serpentine soil originated litter than that in serpentine soil.

The Decomposition of Leaf Litters of Some Tree Species in Temperate Deciduous Forest in Korea II. Changes in Nutrient Content During Litter Decomposition

  • Yang, Keum-Chul;Shim, Jae-Kuk
    • The Korean Journal of Ecology
    • /
    • v.26 no.6
    • /
    • pp.313-319
    • /
    • 2003
  • Dry weight loss and nutrient release from leaf litter for six tree species were studied using litter bag methods. The litter bags were incubated for f6 months on the forest floor in temperate deciduous forest in Mt. Cheonma, located at the middle part of Korean Peninsula. The changes in nutrient content and the rate of dry weight loss in leaf litter varied with litter types. The litter of Pinus densiflora showed the lowest rate of mass loss (k=0.33), nitrogen concentration (0.89%) and ash concentration (2.50%), while showed the highest C/N ratio (63.40). On the other hand, the litter of Acer pseudo-sieboldianum showed the fastest rate of mass loss (k=0.82), the highest nitrogen concentration (1.11%), and the lowest C/N ratio (49.40). During the decomposition, nitrogen, phosphorus and calcium in the leaf litters showed relatively slow decreasing pattern compared to other elements (carbon, potassium, magnesium, manganese and sodium), but potassium and sodium decreased at early stage of the decomposition for all leaf litters. Differences in annual decomposition rates of litter among species were consistent with the particular chemical characteristics of their leaf litters. The initial concentration of nitrogen was positively correlated with litter decomposition rate for six species, while litter decomposition rate of six species was negatively correlated with C:N ratio of initial leaf litters.