• Title/Summary/Keyword: Lithospermum erythrorhizon

Search Result 117, Processing Time 0.048 seconds

Effect of Lithospermum erythrorhizon, Glycyrrhiza uralensis and Dipping of Chitosan on Shelf-life of Kimchi (김치의 보존성 증진을 위한 자초.감초의 혼합 첨가와 Chitosan 침지 효과)

  • Lee, Shin-Ho;Jo, Ok-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.1367-1372
    • /
    • 1998
  • The studies were carried out to investigative effects of Lithospermum erythrorhizon, Glycyrrhiza uralensis 3% (LG) with and without dipping of salted Chinese cabbage in 1% chitosan solution(LGDC) on fermentation of kimchi at $10^{\circ}C$ during 25 days. The pH and titratable acidity of kimchi with LG and LGDC were higher and lower, respectively, than that of control. Viable cells of total bacteria, lactic acid bacteria, Leuconostoc sp. and Lactobacillus plantarum in kimchi added with LG and LGDC were shown inhibitory effect about $1.6{\sim}2.1,\;1.2{\sim}2.9,\;0.8{\sim}2.2,\;0.7{\sim}1.6$ log10 cycle, respectively. Specially Leuconostoc sp. and L. plantarum was very inhibited than in control from 0 day. The sour taste of LG and LGDC added kimchi was changed more slowly than that of control during fermentation of kimchi. But flavor, color and overall acceptability did not show significant difference(P<0.05) between treatments. The shelf-life of LGDC added kimchi was extended over 10 days compared with control.

  • PDF

Shikonin Isolated from Lithospermum erythrorhizon Downregulates Proinflammatory Mediators in Lipopolysaccharide-Stimulated BV2 Microglial Cells by Suppressing Crosstalk between Reactive Oxygen Species and NF-κB

  • Prasad, Rajapaksha Gedara;Choi, Yung Hyun;Kim, Gi-Young
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.110-118
    • /
    • 2015
  • According to the expansion of lifespan, neuronal disorder based on inflammation has been social problem. Therefore, we isolated shikonin from Lithospermum erythrorhizon and evaluated anti-inflammatory effects of shikonin in lipopolysaccharide (LSP)-stimulated BV2 microglial cells. Shikonin dose-dependently inhibits the expression of the proinflammatory mediators, nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and tumor necrosis factor-${\kappa}B$ (TNF-${\alpha}$) as well as their main regulatory genes and products such as inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-${\alpha}$ in LPS-stimulated BV2 microglial cells. Additionally, shikonin suppressed the LPS-induced DNA-binding activity of nuclear factor-${\kappa}B$ (NF-${\kappa}B$) to regulate the key regulatory genes of the proinflammatory mediators, such as iNOS, COX-2, and TNF-${\alpha}$, accompanied with downregulation of reactive oxygen species (ROS) generation. The results indicate that shikonin may downregulate the expression of proinflammatory genes involved in the synthesis of NO, $PGE_2$, and TNF-${\alpha}$ in LPS-treated BV2 microglial cells by suppressing ROS and NF-${\kappa}B$. Taken together, our results revealed that shikonin exerts downregulation of proinflammatory mediators by interference the ROS and NF-${\kappa}B$ signaling pathway.

Optimization of Major Culture Elements on Growth and Shikonin Production in the Lithospermum erythrorhizon Hairy Root Culture

  • Hwang, Ok-Jin;Kim, Yu-Jeong;Sung, Nak-Sul;Ahn, Jun-Cheul;Kim, Sik-Eung;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.4
    • /
    • pp.243-248
    • /
    • 2002
  • The effects of basal media, carbon, nitrogen, phosphate and some major macro elements on growth and shikonin production in Lithospermum erythrorhizon hairy root culture were studied. Among examined media, growth of hairy root cultured in B5 liquid medium was rapid, whereas shikonin production was high in MS liquid medium. Under B5 basal medium, sucrose concentration for optimal growth and shikonin production was 9% and 4% respectively. The growth and shikonin production on pH changes in B5 medium resulted little effect in pH 5.8 to pH 8.8 ranges, whereas growth was decreased dramatically in both above 8.8 and under 5.8. Nitrogen source and concentration effected on the growth and shikonin production. The highest growth rate was in B5 medium (50 mM $KNO_3$ and 1 mM $NaH_2PO_4)$, whereas the highest shikonin production was in the condition supplemented with 5 mM $KNO_3$ and 10 mM $NaH_2PO_4$.

Effect of Ethanol Extracts in Pinus densiflora, Lithospermum erythrorhizon on the Lipid Oxidation of Oil Emulsion (식물체(솔잎, 자초)의 에탄올 추출물이 유탁액의 지방산화에 미치는 영향)

  • 김수민;조영석;성삼경
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.984-989
    • /
    • 1999
  • This study was carried out to investigate the effects of ethanol extracts on lipid oxidation of oil emulsion. The results are as follows; The scavenging ability of plant extracts for hydroxyl radical was found, and plant extracts played an important role as a strong chelating agents to bind iron if Fe2+ ion exists in oil emulsion. Pinus densiflora(PD), Lithospermum erythrorhizon(LE) and PD+LE acted as strong chelating agents to bind iron to reduce lipid oxidation in oil emulsion. The content of Fe2+ ion in ethanol extracts from LE and PD+LE were significantly higher(p<0.05) than that of ethanol extracts from PD. The content of total iron has same tendency. The ascorbic acid content of PD(16.36ppm) was slightly higher than those of LE(13.08ppm). Electron donating ability of PD was significantly higher(p<0.05) than those of LE. However, the superoxide(SOD) like ability of LE showed a little higher than those of LE and PD+LE, which means the strong antioxidant activity of LE. The nitrite scavenging effects were dependent on pH value, however, they decreased as pH value increased. Especially, they almost didn't show the nitrite scavenging effect in pH 6.0. In conclusion, the PD and LE extracts may be used as natural antioxidant sources to reduce lipid oxidation in oil emulsion.

  • PDF