• Title/Summary/Keyword: Lithophyllum yessoense

Search Result 11, Processing Time 0.036 seconds

Effects of Temperature on the Spore Release and Growth of Lithophyllum yessoense and Hildenbrandia rubra (납작돌잎(Lithophyllum yessoense)과 진분홍딱지(Hildenbrandia rubra)의 포자방출 및 생장에 미치는 수온의 영향)

  • Song, Ji Na;Park, Seo Kyoung;Heo, Jin Suk;Oh, Ji Chul;Kim, Young Sik;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.3
    • /
    • pp.296-302
    • /
    • 2013
  • The effects of temperature on spore release, growth and photosynthetic efficiency of Lithophyllum yessoense and Hildenbrandia rubra were examined. L. yessoense was collected at Galnam and H. rubra was collected at Gyeokpo, Korea. The experimental temperatures were different for spore release (10, 15, $20^{\circ}C$), sporeling growth (10, 15, 20, 25, $30^{\circ}C$) and photosynthetic efficiency (10, 15, 20, $25^{\circ}C$). All other culture conditions were the same: 34 psu, 12:12 LD and $50{\mu}mol$ photon $m^{-2}s^{-1}$. Spore liberation was maximal at $10^{\circ}C$ for L. yessoense and at $20^{\circ}C$ for H. rubra. After 14 days, the surface area of L. yessoense was 0.031 $mm^2$ at $25^{\circ}C$ and for H. rubra was 0.032 $mm^2$ at $20^{\circ}C$. Sporelings of L. yessoense were a dark-red color and grew in a round shape. In contrast, H. rubra was bright pink and changed from a round shape in the early growth stage to later become flabelliform. Photosynthetic efficiency was highest between $20-25^{\circ}C$ in both species. In conclusion, L. yessoense and H. rubra display different physiological features based on the optimal temperatures for spore release and sporling growth.

Effects of Calcification Inhibitors on the Viability of the Coralline Algae Lithophyllum yessoense and Corallina pilulifera

  • Kang, Ji-Young;Choi, Ji-Young;Joo, Jin;Choi, Yoo Seong;Hwang, Dong Soo;Cho, Ji-Young;Hong, Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.2
    • /
    • pp.269-273
    • /
    • 2014
  • Coralline algae, the algal whitening phenomenon-causing seaweeds, are characterized by calcareous deposits in the cell wall. The viability of the coralline algae Lithophyllum yessoense and Corallina pilulifera was quantitated using a triphenyltetrazolium chloride assay and eight calcification inhibitors. Among these inhibitors, ferric citrate showed the strongest inhibition of coralline algae viability. The concentrations of ferric citrate conferring 50% inhibition were 1.7 and 3.8 mM for L. yessoense and C. pilulifera, respectively. Thus, at a specific concentration and in a localized area, ferric citrate may be used to prevent the blooming of coralline algae.

The Effects of Environmental Factors on the Growth of Lithophyllum yessoense and Hildenbrandia rubra Sporelings in Laboratory Culture (실내배양에서 납작돌잎(Lithophyllum yessoense)과 진분홍딱지(Hildenbrandia rubra)의 배아 생장에 미치는 환경요인의 영향)

  • Song, Ji Na;Park, Seo Kyoung;Oh, Ji Chul;Yoo, Hyun Il;Kim, Young Sik;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.6
    • /
    • pp.827-834
    • /
    • 2013
  • The effects of environmental factors, such as irradiance, daylength, salinity, and desiccation, on the growth of Lithophyllum yessoense and Hildenbrandia rubra sporelings were examined. Sporelings of each species were cultured with 10, 50, 80, 120, $150{\mu}mol$ photon $m^{-2}s^{-1}$ for 14 days and their maximum growth occurred under $80{\mu}mol$ photon $m^{-2}s^{-1}$. Germlings of both species survived for 21 days in darkness, and even the L.yessoense germlings grew. In the salinity experiment, sporelings of each species survived for 7 days and died after 14 days under 20 and 25 psu, but the sporelings grew well under 34 psu. Physiological features of each species with respect to the evaluated daylengths (8, 12, 14 and 16 h) were slightly different, and maximal growth occurred at 16 h for L. yessoense and at 14 h for H. rubra sporelings. Mortality of the sporelings increased with the exposure period, but H. rubra was less tolerant to desiccation than L. yessoense. In conclusion, sporelings of the two species showed similar growth responses to various environmental factors with slightly different physiological features with respect to salinity, daylength, and desiccation. However, more ecological and physiological studies on slow-growing crustose algae are required to elucidate the expansion of barren ground around the coastal areas of Korea.

Effect of Seaweed Extracts on the Viability of the Crustose Coralline Lithophyllum yessoense

  • Kang Se-Eun;Park Sun-Mee;Choi Jae-Suk;Ahn Dong-Hyun;Kim Young-Dae;Hong Yong-Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.8 no.4
    • /
    • pp.243-246
    • /
    • 2005
  • The addition of seaweed extracts was found to regulate the viability of cultures of the crustose coralline alga Lithophyllum yessoense. The viability was quantitated using a triphenyltetrazolium chloride assay, and the methanol-soluble extracts from 18 prevalent seaweed species were tested. Extracts from Codium fragile and Enteromorpha linza inhibited viability, and a Hizikia fusiform is extract slightly increased viability. The methanol extract of C. fragile, which had the strongest inhibitory activity, decreased viability to 72 or $52\%$ that of the control following addition of 0.2 or 2 mg/mL of extract to the culture, respectively. The main active compound in the C. fragile was lipid. This information is a preliminary result related to the exploration of seaweed restoration in the algal whitening area.

Tetraspore Release and Growth of a Crustose Coralline Alga, Lithophyllum yessoense (Rhodophyta, Corallinaceae) (홍조류 무절석회조, 납작돌잎 (Lithophyllum yessoense) 사분포자체의 포자방출과 생장)

  • Hwang Eun Kyoung;Kim Eun Jin;Kim Hyung Geun;Sohn Chul Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.3
    • /
    • pp.242-246
    • /
    • 2002
  • Growth and tetraspore release pattern of lithophyllum yessoense (Rhodophyta, Corallinaceae) were investigated from March 2000 to July 2001. Pinkish tetraspores were 40.2 $\pm$ 0.4 $\mu$m in diameter. After release, tetraspores attached on substrate shortly. Culture conditions were five temperatures (5, 10, 15, 20, 25^{\circ}C), four irradiances (0, 20, 50, 100 $\mu$mol${\cdot}m^{-2}$${\cdot}s^{-1}$) and six salinities (0, 9, 17, 25, 34, 43 ppt). Maximum growth of gametophyte was occurred at $20^{\circ}C$, $20{\mu}mol\;m^{-2}$${\cdot}s^{-1}$, 16: 8h (L:D) and 34 put. Maximum relative growth rate was 0.1232 at $20^{\circ}C$. The amount of tetraspore release showed maximum at September as 266 cells per crust area ($cm^2$), and tetraspores did not release from January to March.

Variations of Seaweed Community Structure and Distribution of Crustose Coralline Algae at Gallam, Samchuk, Eastern Coast of Korea (한국 동해 삼척시 갈남 해역의 해조 군집구조와 무절산호조류의 분포 변화)

  • Kim, Chansong;Kim, Young Sik;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.10-23
    • /
    • 2014
  • This study was carried out to examine seaweed community structure and distribution of crustose coralline algae at the intertidal and subtidal zones of Gallam, Samchuk, eastern coast of Korea. Total 112 species including 14 of green algae, 33 of brown algae, and 65 of red algae were collected and identified. Among these species, 29 species were found throughout the year. The dominant species which contributed significantly to the total biomass were Ulva pertusa, Colpomenia spp., Sargassum fulvellum, Sargassum fusiforme, Sargassum muticum, Sargassum thunbergii, Corallina pilulifera, and Gelidium elegans. Annual seaweed biomass in dry weight was 66.7 $gm^{-2}$ and maximum biomass was recorded seasonally in summer (107.5 $gm^{-2}$), while minimum was recorded in autumn (36.2 $gm^{-2}$). In seaweed functional group analyses, coarsely branched form was the most dominant functional group constituting from 40.0 to 48.6% of the total flora. Ecological state group ESG II, as an opportunistic species, including sheet form, filamentous form, and coarsely branched form, consisted of 46~61 species, constituting 76.7~82.4%. Crustose coralline algae was observed throughout all seasons. Species of the crustose coralline algae were largely classified into Lithothamnion lemoineae, Lithophyllum okamurai, Lithophyllum yessoense, and Hydrolithon gardineri. The coverage of crustose coralline algae seems to be lower than that of other studies from 36.8% to 11% on average.

Biological Characteristics and Tissue Structure of a Crustose Coralline Lithophyllum Alga (해조류 무절산호조 혹돌잎의 생물학적 특성 및 조직구조)

  • Kang, Ji-Young;Benliro, Ianthe Marie P.;Lee, Ik-Joon;Choi, Ji-Young;Joo, Jin;Choi, Yoo Seong;Hwang, Dong Soo;Hong, Yong-Ki
    • Journal of Life Science
    • /
    • v.23 no.3
    • /
    • pp.341-346
    • /
    • 2013
  • The disappearance of seaweed flora in some rocky areas, which is known as algal whitening, barren ground, coralline flats, or deforested areas, is associated with some species of coralline algae. To determine the biological characteristics of a representative species of crustose coralline alga, the 18S rDNA gene was sequenced to identify the genus Lithophyllum. According to its morphological and distributional characteristics, it was deduced to be L. yessoense. Viability was measured using triphenyl tetrazolium chloride and showed high viability from December to February. Culture conditions of $16^{\circ}C$, a 16 hr light, 8 hr dark cycle, and 30 ${\mu}E/m^2/s$ light intensity were optimal for maintaining the viability of the alga for up to five days. Included in the fatty acids was 9.7% ${\omega}$-3 eicosapentaenoic acid. An electron microscopy scan of the surface structure revealed round craters about 3.6 ${\mu}m$ in diameter, which were covered with rough, irregular, and angular polygon-shaped structures about 1.0 to 3.7 ${\mu}m$ in size. Based on the composition and structure found in our study, biomimetic coralline alga might become an environmentally friendly antifouling material against the attachment of soft foulants.