• Title/Summary/Keyword: Lithium sulfur battery.

Search Result 37, Processing Time 0.035 seconds

Effect of Carbon Content of Sulfur Electrode on the Electrochemical Properties of Lithium/Sulfur Battery Using PEO Electrolyte (유황전극의 탄소량 변화에 따른 리튬/유황 전지의 방전특성 변화)

  • Kang, K.Y.;Ryu, H.S.;Kim, J.S.;Kim, K.W.;Ahn, J.H.;Lee, G.H.;Ahn, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.3
    • /
    • pp.317-323
    • /
    • 2006
  • Electric conductive material should be homogeneously mixed with sulfur in sulfur electrode fabrication of lithium/sulfur battery, because sulfur is electric insulator. In this paper electrochemical properties of Li/S battery was studied with various compositions of sulfur electrodes. When content of sulfur changed from 40 wt.% to 80 wt.%, the 60 wt.% sulfur electrode showed the maximum capacity of 1489 mAh/g-sulfur. Electrochemical properties of Li/S battery using 60 wt.% sulfur was also investigated with various carbon contents. The discharge capacity changed as a function of carbon contents. The optimum composition was 25 wt.% carbon for 60 wt.% sulfur electrode.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

The Effects of the Nano-sized Adsorbing Material on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Secondary Battery (나노 흡착제가 Li/S 이차전지용 유황양극의 전기화학적 특성에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Choel;Kim, Hyun-Seok;Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • A battery based on the lithium/elemental sulfur redox couple has the advantage of high theoretical specific capacity of 1,675 mAh/g-sulfur. However, Li/S battery has bad cyclic durability at room temperature due to sulfur active material loss resulting from lithium polysulfide dissolution. To improve the cycle life of Li/S battery, PEGDME (Poly(ethylene glycol) dimethyl ether) 500 containing 1M LiTFSI salt which has high viscosity was used as electrolyte to retard the polysulfide dissolution and nano-sized $Mg_{0.6}Ni_{0.4}O$ was added to sulfur cathode as additive to adsorb soluble polysulfide within sulfur cathode. From experimental results, the improvement of the capacity and cycle life of Li/S battery was observed( maximum discharge capacity : 1,185 mAh/g-sulfur, C50/C1 = 85 % ). Through the charge-discharge test, we knew that PEGDME 500 played a role of preventing incomplete charge-discharge $behavior^{1,2)$. And then, in sulfur dissolution analysis and rate capability test, we first confirmed that nano-sized $Mg_{0.6}Ni_{0.4}O$ had polysulfide adsorbing effect and catalytic effect of promoting the Li/S redox reaction. In addition, from BET surface area analysis, we also verified that it played the part of increasing the porosity of sulfur cathode.

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere (다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구)

  • Hur, Sung Kyu;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2021
  • Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.

Preparation of rGO-S-CPEs Composite Cathode and Electrochemical Performance of All-Solid-State Lithium-Sulfur Battery

  • Chen, Fei;Zhang, Gang;Zhang, Yiluo;Cao, Shiyu;Li, Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.362-368
    • /
    • 2022
  • The application of polymer composite electrolyte in all-solid-state lithium-sulfur battery (ASSLSBs) can guarantee high energy density and improve the interface contact between electrolyte and electrode, which has a broader application prospect. However, the inherent insulation of the sulfur-cathode leads to a low electron/ion transfer rate. Carbon materials with high electronic conductivity and electrolyte materials with high ionic conductivity are usually selected to improve the electron/ion conduction of the composite cathode. In this work, PEO-LiTFSI-LLZO composite polymer electrolyte (CPE) with high ionic conductivity was prepared. The ionic conductivity was 1.16×10-4 and 7.26×10-4 S cm-1 at 20 and 60℃, respectively. Meanwhile, the composite sulfur cathode was prepared with Sulfur, reduced graphene oxide and composite polymer electrolyte slurry (S-rGO-CPEs). In addition to improving the ion conductivity in the cathode, CPEs also replaces the role of binder. The influence of different contents of CPEs in the cathode material on the performance of the constructed battery was investigated. The results show that the electrochemical performance of the all-solid-state lithium-sulfur battery is the best when the content of the composite electrolyte in the cathode is 40%. Under the condition of 0.2C and 45℃, the charging and discharging capacity of the first cycle is 923 mAh g-1, and the retention capacity is 653 mAh g-1 after 50 cycles.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

The effect of pore structure and surface properties of carbon nanotube films on the performance of a lithium sulfur battery

  • Song, Hyeonjun;Hwang, Yunjae;Kumar, Vimal Tiwari;Jeong, Youngjin
    • Carbon letters
    • /
    • v.27
    • /
    • pp.12-17
    • /
    • 2018
  • We fabricated a Li-S battery with post-treated carbon nanotube (CNT) films which offered better support for sulfur, and investigated the effect of the surface properties and pore structure of the post-treated CNT films on Li-S battery performance. Post-treatments, i.e., acid treatment, unzip process and cetyltrimethylammonium bromide (CTAB) treatment, effectively modified the surface properties and pore structure of the CNT film. The modified pore structure impacted the ability of the CNT films to accommodate the catholyte, resulting in an increase in initial discharge capacity.

Surface Morphology Changes of Lithium/Sulfur Battery using Multi-walled carbon nanotube added Sulfur Electrode during Cyclings (탄소나노튜브가 첨가된 유황전극을 사용한 리튬/유황 전지의 사이클링에 의한 표면형상변화)

  • Park, Jin-Woo;Yu, Ji-Hyun;Kim, Ki-Won;Ryu, Ho-Suk;Ahn, Jou-Hyeon;Jin, Chang-Soo;Shin, Kyung-Hee;Kim, Young-Chul;Ahn, Hyo-Jun
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.174-179
    • /
    • 2011
  • We investigated the surface morphology changes of a lithium/sulfur battery using multi-walled canbon nanotube added sulfur electrode during charge-discharge cycling. The Li/S cell showed the first discharge capacity of 1286 mAh/g-S, which utilized is 71% of the theoretical value. It decreased to 328 mAh/g-S at the 100th cycle, which corresponds to about 19% utilization of the total sulfur in the cathode. The spherical lumps of the reaction product were observed on the surface of the sulfur electrode. This material was verified as lithium sulfide by X-ray diffraction measurement. The pores in the separator were filled with reaction product. Thus the diffusion of the $Li^+$ ion decreased, which resulted in the decreased capacity of the Li/S cell.

The Characteristics of Sulfur Electrode with Carbon Nanotube

  • Ryu, Ho-Suk;Lee, Sang-Won;Kim, Ki-Won;Ahn, Joo-Hyun;Cho, Kwon-Koo;Cho, Gyu-Bong;Ahn, Hyo-Jun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1216-1217
    • /
    • 2006
  • We investigated on the additive effect of carbon nanotube in the sulfur electrode on the first discharge curve and cycling property of lithium/sulfur cell. The sulfur electrode with carbon nanotube had two discharge plateau potentials and the first discharge capacity about 1200 mAh/g sulfur. The addition carbon nanotube into the sulfur electrode did not affect the first discharge behavior, but improved the cycling property of lithium/sulfur cell. The optimum content of carbon nanotube was 6 wt% of sulfur electrode

  • PDF