• Title/Summary/Keyword: Lithium polysilicate

Search Result 2, Processing Time 0.02 seconds

Corrosion Resistance and Thermo-optical Properties of Lithium Polysilicate Spray Coated Anodized AZ31B Magnesium Alloy for Space Applications

  • Ghosh, Rahul;Thota, Hari K.;Rani, R. Uma
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.182-189
    • /
    • 2019
  • A thin spray coating of inorganic black lithium polysilicate (IBLP) on black anodized AZ31B magnesium alloy was fabricated for better corrosion resistance and thermo-optical properties for thermal control of spacecraft components. The morphology of the specimens with and without IBLP-based spray coating was characterized by SEM-EDS techniques. Impedance and potentiodynamic measurements on the specimens revealed better corrosion resistance for the specimen with a thin coating of lithium polysilicate. This was primarily due to the presence of lithium polysilicate inside the micro-cracks of the black anodized specimen, restricting the diffusion paths for corrosive media. Environmental tests, namely, humidity, thermal cycling, thermo vacuum performance, were used to evaluate the space-worthiness of the coating. The thermo-optical properties of the coating were measured before and after each environmental test to ascertain its stability. The specimen with an IBLP-based spray coating showed enhanced thermo-optical properties, greater than ~0.90. Hence, the proposed coating demonstrated better handling, better corrosion resistance, and space-worthiness during the pre-launch phase owing to its improved thermo-optical properties.

A Development of Fire Protective Coating Based on Soluble Alkali Silicate (알칼리 규산염 내화 피복제의 개발)

  • 이내우;김종래;김정훈
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.2
    • /
    • pp.30-38
    • /
    • 1993
  • To increase fire proofing characteristics of protective coating based on soluble alkali silicate, silicate coatings were studied on thermal properties, IR spectroscopy, solubility and intumescence. Intumescence and solubility of the samples were dependent on the strength of cationic cross-links between polysilicate particles. The degree of intumescence and solubility decrease K-silicate > Na-silicate > Li-silicate in the order. Especially Si$_2$O$_{5}$ $^{-2}$ crystalline regions were found to exist in Potassium silicate sample. Mixture of two kinds of silicate, for example, Lithium silicate when added to sodium silicate or potassium silicate was find to significantly reduce efflorescence and increase water resistance. This appears to be a result of stronger crosslinking between polysilicate particles by the small lithium cation.

  • PDF