• Title/Summary/Keyword: Lithium pegmatite

Search Result 3, Processing Time 0.015 seconds

Mineralization in the Pegmatite of Mogok Metamorphic Belt, Myanmar (미얀마 모곡변성대 페그마타이트의 광화작용)

  • Oh, Il-Hwan;Heo, Chul-Ho;Choi, Sang-Hoon;Lee, Sunjin;Cho, Seong-Jun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.183-191
    • /
    • 2018
  • It is reported that Li-bearing minerals regarding as a promising battery industrial commodity occur in the Mogok metamorphic belt, Myanmar. Preliminary considerations on the mineralization of pegmatite occurrences within Mogok metamorphic belt such as Singu, Mogok and Momeik are as follows. In Singu area, lepidolite and rubellite occur together (Letpanhla No. 2 & 7 pegmatite) while rubellite only occur (Letpanhla No. 4 pegmatite). In Mogok area, lepidolite and rubellite occur together (Sakangyi pegmatite). In Momeik area, lepidolite and rubellite occur together (Pheyeou pegmatite) while rubellite only occur (Khetchel Ywar Thit pegmatite). In the future, it is estimated that it is necessary to implement the detailed exploration for the resource evaluation of lithium-bearing mineral targeted for the pegmatite of Mogok metamorphic belt.

Gravity Anomaly around Boam Deposit, Uljin: Implications on Economic Geology (울진 보암광상 일대 중력 이상: 광상학적 함의)

  • Oh, Il-Hwan;Heo, Chul-Ho;Shin, Young-Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • Gravity exploration was conducted to determine the distribution of igneous complex related to lithium pegmatite in the Boam deposit of Uljin, Gyeongsangbuk-do, and the spatial relationship with the regional geology and ore bodies were studied. The gravity exploration result shows that the Boam deposit area is characterized by relatively low gravity anomaly that surrounds the deposit. The Boam deposit is located near the southwest-northeast directional boundary of gravity anomalies where igneous complex (granite gneiss) contacts with the Yuli and Wonnam groups in the southeast, Janggun limestone layers in the east-west direction, and Dongsugok metasedimentary rocks. While the western boundary in the southwest-northeast direction is relatively clear, there may also be unknown igneous complex that are not exposed on the surface at the eastern and southern boundaries because a relatively low gravity anomaly surrounds the deposit. The distribution characteristics of these hidden igneous complex will be used as useful data for predicting the distribution of the lithium pegmatite in the future.

Mineral Geochemistry of the Albite-Spodumene Pegmatite in the Boam Deposit, Uljin (울진 보암광산의 조장석-스포듀민 페그마타이트의 광물 지화학 조성 연구)

  • Park, Gyuseung;Park, Jung-Woo;Heo, Chul-Ho
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.283-298
    • /
    • 2022
  • In this study, we investigated the mineral geochemistry of the albite-spodumene pegmatite, associated exogreisen, and wall rock from the Boam Li deposit, Wangpiri, Uljin, Gyeongsangbuk-do, South Korea. The paragenesis of the Boam Li deposit consists of two stages; the magmatic and endogreisen stages. In the magmatic stage, pegmatite dikes mainly composed of spodumene, albite, quartz, and K-feldspar intruded into the Janggun limestone formation. In the following endogreisen stage, the secondary fine-grained albite along with muscovite, apatite, beryl, CGM(columbite group mineral), microlite, and cassiterite were precipitated and partly replaced the magmatic stage minerals. Exogreisen composed of tourmaline, quartz, and muscovite develops along the contact between the pegmatite dike and wall rock. The Cs contents of beryl and muscovite and Ta/(Nb+Ta) ratio of CGM are higher in the endogreisen stage than the magmatic stage, suggesting the involvement of the more evolved melts in the greisenization than in the magmatic stage. Florine-rich and Cl-poor apatite infer that the parental magma is likely derived from metasedimentary rock (S-type granite). P2O5 contents of albite in the endogreisen stage are below the detection limit of EDS while those of albite in the magmatic stage are 0.28 wt.% on average. The lower P2O5 contents of the former albite can be attributed to apatite and microlite precipitation during the endogreisen stage. Calcium introduced from the adjacent Janggun formation may have induced apatite crystallization. The interaction between the pegmatite and Janggun limestone is consistent with the gradual increase in Ca and other divalent cations and decrease in Al from the core to the rim of tourmaline in the exogreisen.