• Title/Summary/Keyword: Lithium ions

Search Result 164, Processing Time 0.023 seconds

Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions (다이메틸설폭시화물 용매를 사용한 PVC-LMO 비드의 제조와 리튬 이온 흡착 특성)

  • You, Hae-Na;Lee, Dong-Hwan;Lee, Min-Gyu
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.154-159
    • /
    • 2014
  • In this study, PVC-LMO beads were prepared by immobilizing lithium manganese oxide (LMO) with poly vinyl chloride (PVC) diluted in dimethyl sulfoxide (DMSO) solvent on behalf of N-methyl-2-pyrrolidone (NMP). XRD analysis confirmed that LMO was immobilized well in PVC-LMO beads. The diameter of PVC-LMO beads synthesized by DMSO was about 4 mm. The adsorption experiments of lithium ions by PVC-LMO beads were conducted batchwise. The maximum adsorption capacity obtained from Langmuir model was 21.31 mg/g. The adsorption characteristics of lithium ions by PVC-LMO beads was well described by the pseudo-second-order kinetic model. It was considered that the internal diffusion was the rate controlling step.

Exposure Assessment Study on Lithium-Ion Battery Fire in Explosion Test Room in Battery Testing Facility

  • Mi Sung Jo;Hoi Pin Kim;Boo Wook Kim;Richard C. Pleus;Elaine M. Faustman;Il Je Yu
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.114-117
    • /
    • 2024
  • A lithium-ion battery is a rechargeable battery that uses the reversible reduction of lithium ions to store energy and is the predominant battery type in many industrial and consumer electronics. The lithium-ion batteries are essential to ensure they operate safely. We conducted an exposure assessment five days after a fire in a battery-testing facility. We assessed some of the potentially hazardous materials after a lithium-ion battery fire.We sampled total suspended particles, hydrogen fluoride, and lithium with real-time monitoring of particulate matter (PM) 1, 2.5, and 10 micrometers (㎛). The area sampling results indicated that primary potential hazardous materials such as dust, hydrogen fluoride, and lithium were below the recommended limits suggested by the Korean Ministry of Labor and the American Conference of Governmental Industrial Hygienists Threshold Limit Values. Based on our assessment, workers were allowed to return to work.

Chemical and Electrochemical Intercalation of Lithium in 2D-FeMoO$_4Cl^1$

  • Choy Jin-Ho;Chang Soon-Ho;Noh Dong-Youn;Son Kyoung-A
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.27-30
    • /
    • 1989
  • Lithium has been intercalated into $FeMoO_4Cl$, and deintercalated from $LixFeMoO_4Cl$ both electrochemically and chemically. The inserted $Li^+$ ions are stabilized in the distorted octahedral field in interlayer space of $FeMoO_4Cl$. The crystal symmetry is reduced from tetragonal to monoclinic due to the reduction of ferric to ferrous ions in $LixFeMoO_4Cl$ upon lithium intercalation. From the magnetic and structural data, it has been concluded that the high-spin electronic configuration of $Fe^{2+}(d_{xz}^2{d_{y2}^1}{d_1}{2d_z^12}{\cdot}_y2)$, corresponding to $^5E_g$, group term in $D_{4h}$ symmetry, can be stabilized by the elongation of $FeO_4Cl_{2-}$octahedra in a weak ligand field.

Effect of Cation Complexation of Hindered Phenol Antioxidants on their Fragmentation in Electrospray Ionization Tandem Mass Spectrometry

  • Yim, Yong-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.159-162
    • /
    • 2021
  • The fragmentation pattern of four hindered phenol antioxidants was investigated using ammonium and lithium ions as the additives for ionization. Due to different binding geometries and interactions, they underwent different characteristic fragmentation reactions providing useful complementary information for structural analysis of hindered phenol antioxidants. Ammonium ion adducts were fragmented successively until all t-butyl groups were lost in the form of isobutylene and allowed the estimation of the number of t-butyl groups present in the molecule. Lithium ion adducts produced fragment ions from major backbone cleavage, on the other hand, which provide more crucial information for the identification of detailed backbone structure.

Effect of Interaction between Lithium Ions on Lithium Transport : Analysis of Potentiostatic Current Transient Measured on $Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ Film Electrode ($Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ 박막 전극내의 리튬 이동에 미치는 리튬 이온들간의 상호작용의 영향 : $Li_{1+\delta}[Ti_{5/3}/Li_{1/3}]O_4$ 박막 전극의 정전압 전류추이곡선의 해석)

  • 정규남;변수일;김성우
    • 한국전기화학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.41-41
    • /
    • 2001
  • PDF

On the photorefractive resistance characteristics of lithium niobate single crystals with doping (Lithium niobate 단결정의 첨가 이온$(Zn^{2+},;Mg^{2+})$에 따른 광손상 특성에 관한 연구)

  • 김기현;심광보;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.10-17
    • /
    • 1998
  • The characteristics of the lithium niobate single ($LiNbO_3$) crystals grown doped with $Mg^{2+}$ or $Zn^{2+}$ ions, which are well-known as the ions improving the photorefractive resistance of $LiNbO_3$, have been analysed in comparision with those of undoped $LiNbO_3$ crystal. In particular, $Zn^{2+}$ doping was estimated to increase the photorefractive resistance indirectly from the optical and electrical properties. Therefore, the $LiNbO_3$ crystals doped with ZnO could be used for high intensive laser device application.

  • PDF

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).

The Preparation of Non-aqueous Supercapacitors with Lithium Transition-Metal Oxide/Activated Carbon Composite Positive Electrodes

  • Kim, Kyoung-Ho;Kim, Min-Soo;Yeu, Tae-Whan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3183-3189
    • /
    • 2010
  • In order to increase the specific capacitance and energy density of supercapacitors, non-aqueous supercapacitors were prepared using lithium transition-metal oxides and activated carbons as active materials. The electrochemical properties were analyzed in terms of the content of lithium transition-metal oxides. The results of cyclic voltammetry and AC-impedance analyses showed that the pseudocapacitance may stem from the synergistic contributions of capacitive and faradic effects; the former is due to the electric double layer which is prepared in the interface of activated carbon and organic electrolyte, and the latter is due to the intercalation of lithium ($Li^+$) ions. The specific capacitance and energy density of a supercapacitor improved as the lithium transition-metal oxides content increased, showing 60% increase compared to those of supercapacitor using a pure activated carbon positive electrode.

In Situ X-ray Absorption Spectroscopic Study for α-MoO3 Electrode upon Discharge/Charge Reaction in Lithium Secondary Batteries

  • Kang, Joo-Hee;Paek, Seung-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3675-3678
    • /
    • 2010
  • In-situ X-ray absorption spectroscopy (XAS) was used to elucidate the structural variation of $\alpha-MoO_3$ electrode upon discharge/charge reaction in a lithium ion battery. According to the XAS analysis, hexavalent Mo atoms in $\alpha-MoO_3$ framework are reduced as the amount of intercalated lithium ions increases. As lithium de-intercalation proceeds, most of pre-edge peaks are restored again. However, according to the Fourier transforms of the extended X-ray absorption fine structure (EXAFS) spectra, lithium de-intercalation reaction is partially irreversible upon the charge reaction, which is one of the main reasons why the capacity of $\alpha-MoO_3$ electrode decreases upon successive discharge/charge cycles.