• 제목/요약/키워드: Lithium ion cells

검색결과 155건 처리시간 0.028초

Cell Balancing Scheme with Series Coupling of Multiple Primary Windings for Hybrid Electric Vehicle Lithium-Ion Battery Cells

  • Park, Hong-Sun;Kim, Chong-Eun;Moon, Gun-Woo;Lee, Joong-Hui
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.347-349
    • /
    • 2007
  • Charge equalization scheme for HEV lithium-ion battery system is proposed in this paper, where all the primary windings with in parallel bi-directional switches are coupled in series to provide the equalizing energy from the whole battery string to the specific under charged cells. Moreover, to realize minimized size of equalization circuit employing the proposed cell balancing scheme, the optimal power rating design rule according to equalization time and SOC distribution of imbalance is proposed. A prototype of HEV lithium-ion battery system of four cells shows the outstanding charge equalization performance while maintaining greatly reduced size of cell balancing circuit.

  • PDF

머신러닝 기반 스마트 단말기 Lithium-Ion Cell의 잔량 추정 방법의 실증적 연구 (An Empirical Study on Machine Learning based Smart Device Lithium-Ion Cells Capacity Estimation)

  • 장성진
    • 문화기술의 융합
    • /
    • 제6권4호
    • /
    • pp.797-802
    • /
    • 2020
  • 지난 몇 년 동안 스마트 폰을 비롯한 다양한 스마트 기기들은 휴대성을 기반으로 사용자의 요구에 의해 지속적으로 성능이 향상 되고 있다. 유비쿼터스 컴퓨팅 (Ubiquitous Computing) 환경과 센서 네트워크 (Sensor network)등의 다양한 망 접속 기술로 인하여 휴대성을 기반으로 하는 단말기들이 다양하게 보급되어 사용되고 있다. 스마트 단말들은 사용 중에 보다 안정적인 동작을 위하여 에너지 모니터링을 세밀하게 할 수 있는 기술이 필요하게 되었다. 소형 경량화 된 스마트 단말기는 다양한 멀티미디어 작업으로 인하여 단말 운용 중에 전원 부족 문제가 발생하게 된다. 이와 같은 상황을 미리 방지하고 안정적인 단말 운용을 위해서 기존에 다양한 추정 하드웨어가 개발 되었다. 그러나 잔량 추정을 하는 방법이나 성능이 비교적 우수하지 못하였다. 본 논문에서는 스마트 단말의 운용 중에 발생 할 수 있는 잔여 잔량 문제를 미리 예측하여 보다 안정적인 운용을 위한 리튬이온 셀의 잔량 추정 방법을 머신러닝에 기초를 두고 연구 하였다. 기존의 하드웨어적인 추정 방법이 아니라 사용 중인 리튬이온 셀의 특성을 머신러닝 기법을 이용한 학습 알고리즘으로 학습 시키고 최적화된 결과를 추정하여 적용 하고자 한다.

Detection of Unbalanced Voltage Cells in Series-connected Lithium-ion Batteries Using Single-frequency Electrochemical Impedance Spectroscopy

  • Togasaki, Norihiro;Yokoshima, Tokihiko;Oguma, Yasumasa;Osaka, Tetsuya
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.415-423
    • /
    • 2021
  • For a battery module where single cells are connected in series, the single cells should each have a similar state of charge (SOC) to prevent them from being exposed to an overcharge or over-discharge during charge-discharge cycling. To detect the existence of unbalanced SOC cells in a battery module, we propose a simple measurement method using a single-frequency response of electrochemical impedance spectroscopy (EIS). For a commercially available graphite/nickel-cobalt-aluminum-oxide lithium-ion cell, the cell impedance increases significantly below SOC20%, while the impedance in the medium SOC region (SOC20%-SOC80%) remains low with only minor changes. This impedance behavior is mostly due to the elementary processes of cathode reactions in the cell. Among the impedance values (Z, Z', Z"), the imaginary component of Z" regarding cathode reactions changes heavily as a function of SOC, in particular, when the EIS measurement is performed around 0.1 Hz. Thanks to the significant difference in the time constant of cathode reactions between ≤SOC10% and ≥SOC20%, a single-frequency EIS measurement enlarges the difference in impedance between balanced and unbalanced cells in the module and facilitates an ~80% improvement in the detection signal compared to results with conventional EIS measurements.

리튬이온전지용 Conducting Agents의 전기화학적 성능에 미치는 영향 (Effects on Electrochemical Performances of Conducting Agents for Lithium-ion Batteries)

  • 이창우;이미숙;문성인;김영규;김병화;김동훈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.593-594
    • /
    • 2005
  • Lithium-ion batteries have used the layered $LiCoO_2$ materials as cathodes, but Co is relatively toxic and expensive. In this regard, the spinel $LiMn_2O_4$ has become appealing because manganese is inexpensive and environmentally benign. In general, cathodes for lithium ion batteries include carbon as a conductive agent that provides electron transfer between the active material and the current collector. In this work, we selected Acetylene Black and Super P Black as conducting agents, and then carried out comparative investigation for the performances of the cells using different conducting agents with different particle size. As a consequence, Li/$LiMn_2O_4$ cells with Super P Black show better electrochemical performances than those with Acetylene Black.

  • PDF

A Modularized Two-Stage Charge Equalization Converter for Series Connected Lithium-Ion Battery Strings

  • Kim, Chol-Ho;Park, Hong-Sun;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.535-537
    • /
    • 2008
  • This paper proposes a modularized two-stage charge equalization converter for a series-connected lithium-ion battery string. In this paper, the series-connected battery sting is modularized into M modules, and each module has K cells in series. With this modularization, low voltage stress on the electronic devices can be achieved. A two-stage dc-dc converter with cell selection switches is employed. The first stage dc-dc converter steps down the high bus voltage to about 10 V. The second stage dc-dc converter integrated with selection switches equalizes the cell voltages. A prototype for 88 lithium-ion battery cells is optimally designed and implemented. Experimental results verify that the proposed equalization method has good cell balancing performance showing low voltage stress, small size, and low cost.

  • PDF

Study on the Cycling Performances of Lithium-Ion Polymer Cells Containing Polymerizable Additives

  • Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.319-322
    • /
    • 2009
  • Gel polymer electrolytes were prepared by immersing a porous poly(vinylidene fluoride-co-hexafluoropropylene) membrane in an electrolyte solution containing small amounts of polymerizable additive (3,4-ethylenedioxythiophene, thiophene, biphenyl). The organic additives were electrochemically oxidized to form conductive polymer films on the electrode at high potential. With the gel polymer electrolytes containing different organic additive, lithium-ion polymer cells composed of carbon anode and LiCo$O_2$ cathode were assembled and their cycling performances were evaluated. Adding small amounts of thiophene or 3,4-ethylenedioxythiophene to the gel polymer electrolyte was found to reduce the charge transfer resistance in the cell and it thus exhibited less capacity fading and better high rate performance.

트랜스포머 1차측 병렬 구조를 가진 직렬 연결 리튬이온 배터리 전하 균일 컨버터 (Charge Equalization Converter with Parallel Primary Winding for Series Connected Lithium-Ion Battery strings)

  • 김철호;박홍선;김정은;문건우;이중휘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.256-258
    • /
    • 2007
  • A charge equalization converter with parallel-connected primary windings of transformers is proposed in digest. The proposed work effectively balance the voltage among Lithium-Ion battery cells despite each battery cell has low voltage gap compared with its SOC. The principle of the proposed work is that the equalizing energy from all battery strings moves to the lowest voltage battery through the isolated dc/dc converter controlled by the corresponding bi-directional switch. In this digest, a prototype of four Lithium-Ion battery cells is optimally designed and implemented, and experimental results show that the proposed method has excellent cell balancing performance.

  • PDF

전기자동차 파우치형 배터리 열관리 시스템의 냉각성능 향상에 대한 연구 (A Study on the Cooling Performance Improvement of Pouch Battery Thermal Management System for Electric Vehicles)

  • 신정훈;이준경
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.715-724
    • /
    • 2022
  • In many electric vehicles, large-capacity pouch-type lithium-ion battery packs are mainly used to increase the mileage on a single charge. The lithium ion battery should be operated within the temperature range of 25℃ to 40℃ because the battery performance can be rapidly deteriorated due to an increase in internal temperature. Battery thermal management system (BTMS) can give the suitable temperature conditions to battery by water cooling method. In this research, the heat transfer characteristics (the battery temperature distributions and the water flow characteristics) were analyzed by CFD method to investigate the thermal performance of the cooling plate with 4-pass water flow structure. Moreover, the effect of the presence of fins between the battery cell was identified. The fins made smooth temperature distributions between the battery cells due to the heat spreading and lower the average battery cells temperature.

Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries

  • Choi, Ji-Ae;Shim, Eun-Gi;Scrosati, Bruno;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3190-3194
    • /
    • 2010
  • Mixed electrolytes formed by the combination of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) ionic liquid and standard liquid electrolyte are prepared and characterized. Linear sweep voltammetry measurements demonstrate that these mixed systems exhibit a wide electrochemical stability window, allowing them to be suitable electrolyte for carbonaceous anode-based lithium-ion batteries. Lithium-ion cells composed of graphite anode and $LiCoO_2$ cathode are assembled using the mixed electrolytes, and their cycling performances are evaluated. The cell containing proper content of BMP-TFSI shows good cycling performance comparable to that of a cell assembled with organic electrolyte. The presence of BMP-TFSI in the mixed electrolyte contributes to the reduction of the flammability of electrolyte solution and the improvement of the thermal stability of charged $Li_{1-x}CoO_2$ in the electrolyte solution.

Neuroprotection of Lithium is Associated with Inhibition of Bax Expression and Caspase 8 Activation

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권5호
    • /
    • pp.389-396
    • /
    • 2001
  • Neuroprotective properties of lithium were investigated by using in vivo NMDA excitotoxicity model. The appearance of TUNEL positive cells was prominent within 24 h of NMDA (70 mg/kg, i.p.) injection in the regions of the cortex, hippocampal formation, and thalamus of mouse cerebrum. NMDA treatment resulted in the extensive enhancement of Bax immunoreactivity in the cortical and hippocampal regions. NMDA also increased the immunoreactivity of caspase 8 in the similar regions of the mouse cerebrum. However, the increased immunoreactivity of Bax and caspase 8 were dramatically attenuated by chronic lithium pretreatment (lithium chloride, 300 mg/kg/d, i.p. for $7{\sim}10$ days). At the same time, lithium ion blocked the appearance of TUNEL positive cells, and the morphological assessment indicated an effective neuroprotection by lithium against NMDA excitotoxicity. Although the exact action mechanism of lithium is not straightforward at this time, we propose that the inhibition of Bax and caspase cascade is involved in the neuroprotective action of lithium.

  • PDF